These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 9491895)

  • 21. Drosophila myosin V is required for larval development and spermatid individualization.
    Mermall V; Bonafé N; Jones L; Sellers JR; Cooley L; Mooseker MS
    Dev Biol; 2005 Oct; 286(1):238-55. PubMed ID: 16126191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drosophila klaroid encodes a SUN domain protein required for Klarsicht localization to the nuclear envelope and nuclear migration in the eye.
    Kracklauer MP; Banks SM; Xie X; Wu Y; Fischer JA
    Fly (Austin); 2007; 1(2):75-85. PubMed ID: 18820457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endogenous GSK-3/shaggy regulates bidirectional axonal transport of the amyloid precursor protein.
    Weaver C; Leidel C; Szpankowski L; Farley NM; Shubeita GT; Goldstein LS
    Traffic; 2013 Mar; 14(3):295-308. PubMed ID: 23279138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Drosophila KASH domain proteins Msp-300 and Klarsicht and the SUN domain protein Klaroid have no essential function during oogenesis.
    Technau M; Roth S
    Fly (Austin); 2008; 2(2):82-91. PubMed ID: 18820478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport by populations of fast and slow kinesins uncovers novel family-dependent motor characteristics important for in vivo function.
    Arpağ G; Shastry S; Hancock WO; Tüzel E
    Biophys J; 2014 Oct; 107(8):1896-1904. PubMed ID: 25418170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling bidirectional transport of quantum dot nanoparticles in membrane nanotubes.
    Kuznetsov AV
    Math Biosci; 2011 Aug; 232(2):101-9. PubMed ID: 21609723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules.
    Semiz S; Park JG; Nicoloro SM; Furcinitti P; Zhang C; Chawla A; Leszyk J; Czech MP
    EMBO J; 2003 May; 22(10):2387-99. PubMed ID: 12743033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load.
    Milic B; Andreasson JOL; Hogan DW; Block SM
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6830-E6838. PubMed ID: 28761002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules.
    Muresan V; Godek CP; Reese TS; Schnapp BJ
    J Cell Biol; 1996 Oct; 135(2):383-97. PubMed ID: 8896596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstitution of membrane transport powered by a novel dimeric kinesin motor of the Unc104/KIF1A family purified from Dictyostelium.
    Pollock N; de Hostos EL; Turck CW; Vale RD
    J Cell Biol; 1999 Nov; 147(3):493-506. PubMed ID: 10545495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins.
    Vale RD; Malik F; Brown D
    J Cell Biol; 1992 Dec; 119(6):1589-96. PubMed ID: 1469050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons.
    Pilling AD; Horiuchi D; Lively CM; Saxton WM
    Mol Biol Cell; 2006 Apr; 17(4):2057-68. PubMed ID: 16467387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental biology: holding pattern for histones.
    Brasaemle DL; Hansen JC
    Curr Biol; 2006 Nov; 16(21):R918-20. PubMed ID: 17084687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila.
    Horiuchi D; Barkus RV; Pilling AD; Gassman A; Saxton WM
    Curr Biol; 2005 Dec; 15(23):2137-41. PubMed ID: 16332540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dorsal-ventral signaling in the Drosophila eye.
    Papayannopoulos V; Tomlinson A; Panin VM; Rauskolb C; Irvine KD
    Science; 1998 Sep; 281(5385):2031-4. PubMed ID: 9748163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells.
    De Rossi MC; Wetzler DE; Benseñor L; De Rossi ME; Sued M; Rodríguez D; Gelfand V; Bruno L; Levi V
    Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3178-3189. PubMed ID: 28935608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glu415 in the alpha-tubulins plays a key role in stabilizing the microtubule-ADP-kinesin complexes.
    Gaspar I; Szabad J
    J Cell Sci; 2009 Aug; 122(Pt 16):2857-65. PubMed ID: 19622631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drosophila Lipid Storage Droplet 2 gene (Lsd-2) is expressed and controls lipid storage in wing imaginal discs.
    Fauny JD; Silber J; Zider A
    Dev Dyn; 2005 Mar; 232(3):725-32. PubMed ID: 15704138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. As the fat flies: The dynamic lipid droplets of Drosophila embryos.
    Welte MA
    Biochim Biophys Acta; 2015 Sep; 1851(9):1156-85. PubMed ID: 25882628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vesicle transport: klarsicht clears up the matter.
    Jäckle H; Jahn R
    Curr Biol; 1998 Jul; 8(15):R542-4. PubMed ID: 9705929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.