These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 9492170)
1. A 0.5 G, 60 Hz magnetic field suppresses melatonin production in pinealocytes. Rosen LA; Barber I; Lyle DB Bioelectromagnetics; 1998; 19(2):123-7. PubMed ID: 9492170 [TBL] [Abstract][Full Text] [Related]
2. Exposure of female rats to a 100-microT 50 Hz magnetic field does not induce consistent changes in nocturnal levels of melatonin. Löscher W; Mevissen M; Lerchl A Radiat Res; 1998 Nov; 150(5):557-67. PubMed ID: 9806598 [TBL] [Abstract][Full Text] [Related]
3. Horizontal or vertical 50-Hz, 1-microT magnetic fields have no effect on pineal gland or plasma melatonin concentration of albino rats. Kato M; Honma K; Shigemitsu T; Shiga Y Neurosci Lett; 1994 Feb; 168(1-2):205-8. PubMed ID: 8028776 [TBL] [Abstract][Full Text] [Related]
4. NTP Studies of Magnetic Field Promotion (DMBA Initiation) in Female Sprague-Dawley Rats (Whole-body Exposure/Gavage Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 1999 Aug; 489():1-148. PubMed ID: 12563342 [TBL] [Abstract][Full Text] [Related]
5. No short-term effects of high-frequency electromagnetic fields on the mammalian pineal gland. Vollrath L; Spessert R; Kratzsch T; Keiner M; Hollmann H Bioelectromagnetics; 1997; 18(5):376-87. PubMed ID: 9209719 [TBL] [Abstract][Full Text] [Related]
6. Effects of 60 Hz magnetic field exposure on the pineal and hypothalamic-pituitary-gonadal axis in the Siberian hamster (Phodopus sungorus). Wilson BW; Matt KS; Morris JE; Sasser LB; Miller DL; Anderson LE Bioelectromagnetics; 1999; 20(4):224-32. PubMed ID: 10230936 [TBL] [Abstract][Full Text] [Related]
7. Magnetic field exposure increases cell proliferation but does not affect melatonin levels in the mammary gland of female Sprague Dawley rats. Fedrowitz M; Westermann J; Löscher W Cancer Res; 2002 Mar; 62(5):1356-63. PubMed ID: 11888905 [TBL] [Abstract][Full Text] [Related]
8. 1800 MHz electromagnetic field effects on melatonin release from isolated pineal glands. Sukhotina I; Streckert JR; Bitz AK; Hansen VW; Lerchl A J Pineal Res; 2006 Jan; 40(1):86-91. PubMed ID: 16313503 [TBL] [Abstract][Full Text] [Related]
9. Circularly polarised MF (500 micro T 50 Hz) does not acutely suppress melatonin secretion from cultured Wistar rat pineal glands. Tripp HM; Warman GR; Arendt J Bioelectromagnetics; 2003 Feb; 24(2):118-24. PubMed ID: 12524678 [TBL] [Abstract][Full Text] [Related]
10. No association between occupational exposure to ELF magnetic field and urinary 6-sulfatoximelatonin in workers. Gobba F; Bravo G; Scaringi M; Roccatto L Bioelectromagnetics; 2006 Dec; 27(8):667-73. PubMed ID: 16988988 [TBL] [Abstract][Full Text] [Related]
11. N-bromoacetyltryptamine strongly and reversibly inhibits in vitro melatonin secretion from mammalian pinealocytes. Lewczuk B; Zheng W; Prusik M; Cole PA; Przybylska-Gornowicz B Neuro Endocrinol Lett; 2005 Oct; 26(5):581-92. PubMed ID: 16264397 [TBL] [Abstract][Full Text] [Related]
12. Direct suppressive effects of weak magnetic fields (50 Hz and 16 2/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus). Brendel H; Niehaus M; Lerchl A J Pineal Res; 2000 Nov; 29(4):228-33. PubMed ID: 11068945 [TBL] [Abstract][Full Text] [Related]
13. Local corticosterone infusion enhances nocturnal pineal melatonin production in vivo. Fernandes PA; Bothorel B; Clesse D; Monteiro AW; Calgari C; Raison S; Simonneaux V; Markus RP J Neuroendocrinol; 2009 Feb; 21(2):90-7. PubMed ID: 19076264 [TBL] [Abstract][Full Text] [Related]
14. Can disturbances in the atmospheric electric field created by powerline corona ions disrupt melatonin production in the pineal gland? Henshaw DL; Ward JP; Matthews JC J Pineal Res; 2008 Nov; 45(4):341-50. PubMed ID: 18384531 [TBL] [Abstract][Full Text] [Related]
15. The influence of long-term exposure of mice to randomly varied power frequency magnetic fields on their nocturnal melatonin secretion patterns. de Bruyn L; de Jager L; Kuyl JM Environ Res; 2001 Feb; 85(2):115-21. PubMed ID: 11161661 [TBL] [Abstract][Full Text] [Related]
16. Morphometric and structural study of the pineal gland of the Wistar rat subjected to the pulse action of a 52 Gauss, (50 Hz) magnetic field. Evolutive analysis over 21 days. Giménez-González M; Martínez-Soriano F; Armañanzas E; Ruiz-Torner A J Hirnforsch; 1991; 32(6):779-86. PubMed ID: 1821424 [TBL] [Abstract][Full Text] [Related]
17. D-aspartate uptake into cultured rat pinealocytes and the concomitant effect on L-aspartate levels and melatonin secretion. Takigawa Y; Homma H; Lee JA; Fukushima T; Santa T; Iwatsubo T; Imai K Biochem Biophys Res Commun; 1998 Jul; 248(3):641-7. PubMed ID: 9703979 [TBL] [Abstract][Full Text] [Related]
18. Pineal 'synaptic ribbons' and serum melatonin levels in the rat following the pulse action of 52-Gs (50-Hz) magnetic fields: an evolutive analysis over 21 days. Martínez Soriano F; Giménez González M; Armañazas E; Ruiz Torner A Acta Anat (Basel); 1992; 143(4):289-93. PubMed ID: 1323903 [TBL] [Abstract][Full Text] [Related]
19. [Evaluation of the effect of magnetic fields on the secretion of melatonin in humans and rats. Circadian study]. Touitou Y; Selmaoui B; Lambrozo J; Auzeby A Bull Acad Natl Med; 2002; 186(9):1625-39; discussion 1639-41. PubMed ID: 14556578 [TBL] [Abstract][Full Text] [Related]