These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9492217)

  • 41. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of stress on calcification of delipidated bovine pericardial tissue employed in construction of cardiac valves.
    Jorge-Herrero E; Fernández P; Escudero C; de la Torre N; Zurita M García Páez JM; Castillo-Olivares JL
    J Biomed Mater Res; 1996 Mar; 30(3):411-5. PubMed ID: 8698705
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative assessment of hepatic Glisson's capsule and bovine pericardium in heart valve bioprostheses.
    Kagramanov II; Kokshenev IV; Dobrova NB; Kastava VT; Serov RA; Zaets SB
    J Heart Valve Dis; 1998 May; 7(3):273-7. PubMed ID: 9651839
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative electron microscopic study of bovine, porcine and human parietal pericardium, as materials for cardiac valve bioprostheses.
    Fentie IH; Allen DJ; Schenck MH; Didio LJ
    J Submicrosc Cytol; 1986 Jan; 18(1):53-65. PubMed ID: 3959161
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The pericardial bioprosthesis: altered tissue shear properties following glutaraldehyde fixation.
    Boughner DR; Haldenby M; Hui AJ; Dunmore-Buyze J; Talman EA; Wan WK
    J Heart Valve Dis; 2000 Nov; 9(6):752-60. PubMed ID: 11128780
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading.
    Sellaro TL; Hildebrand D; Lu Q; Vyavahare N; Scott M; Sacks MS
    J Biomed Mater Res A; 2007 Jan; 80(1):194-205. PubMed ID: 17041913
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation and characterization of an acellular bovine pericardium intended for manufacture of valve bioprostheses.
    Goissis G; Giglioti Ade F; Braile DM
    Artif Organs; 2011 May; 35(5):484-9. PubMed ID: 21595716
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methods for the treatment of collagenous tissues for bioprostheses.
    Khor E
    Biomaterials; 1997 Jan; 18(2):95-105. PubMed ID: 9022956
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A study of the effects of glutaraldehyde and formaldehyde on the mechanical behaviour of bovine pericardium.
    van Noort R; Yates SP; Martin TR; Barker AT; Black MM
    Biomaterials; 1982 Jan; 3(1):21-6. PubMed ID: 6802196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Local variation in the tearing strength of chemically modified pericardium.
    Crofts CE; Trowbridge EA
    Biomaterials; 1989 May; 10(4):230-4. PubMed ID: 2742950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heparinized bovine pericardium as a novel cardiovascular bioprosthesis.
    Lee WK; Park KD; Han DK; Suh H; Park JC; Kim YH
    Biomaterials; 2000 Nov; 21(22):2323-30. PubMed ID: 11026639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pericardial tissue for cardiovascular application: an in-vitro evaluation of established and advanced production processes.
    Grefen L; König F; Grab M; Hagl C; Thierfelder N
    J Mater Sci Mater Med; 2018 Nov; 29(11):172. PubMed ID: 30392024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical properties and histology of charge modified bioprosthetic tissue resistant to calcification.
    Golomb G; Lewinstein I; Ezra V; Schoen FJ
    Biomaterials; 1992; 13(6):353-6. PubMed ID: 1610958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental evaluation of an autologous tissue heart valve.
    Love JW; Schoen FJ; Breznock EM; Shermer SP; Love CS
    J Heart Valve Dis; 1992 Nov; 1(2):232-41. PubMed ID: 1341634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mapping of bovine pericardium: physical and histopathologic tests.
    Braile DM; Soares MJ; Souza DR; Ramirez VD; Suzigan S; Godoy MF
    J Heart Valve Dis; 1998 Mar; 7(2):202-6. PubMed ID: 9587862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reducing the variability in durability of heart valve bioprostheses. Key factor for future improvement.
    Gabbay S; Welch H
    ASAIO Trans; 1988; 34(4):1022-6. PubMed ID: 3219248
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping of glutaraldehyde-treated bovine pericardium and tissue selection for bioprosthetic heart valves.
    Simionescu D; Simionescu A; Deac R
    J Biomed Mater Res; 1993 Jun; 27(6):697-704. PubMed ID: 8408100
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new method for selecting calf pericardium for use in cardiac bioprostheses on the basis of morphological and mechanical criteria.
    García Páez JM; Jorge-Herrero E; Carrera A; Millán I; Rocha A; Cordón A; Salvador J; Sainz N; Méndez J; Castillo-Olivares JL
    J Mater Sci Mater Med; 2001 Aug; 12(8):665-71. PubMed ID: 15348235
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro properties and performance of glutaraldehyde-crosslinked bovine pericardial bioprostheses treated with glutamic acid.
    Braile MC; Carnevalli NC; Goissis G; Ramirez VA; Braile DM
    Artif Organs; 2011 May; 35(5):497-501. PubMed ID: 21595718
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves.
    Aguiari P; Iop L; Favaretto F; Fidalgo CM; Naso F; Milan G; Vindigni V; Spina M; Bassetto F; Bagno A; Vettor R; Gerosa G
    Biomed Mater; 2017 Feb; 12(1):015021. PubMed ID: 28157718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.