These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 9492227)

  • 1. Characterization and assessment of a novel poly(ethylene oxide)/polyurethane composite hydrogel (Aquavene) as a ureteral stent biomaterial.
    Gorman SP; Tunney MM; Keane PF; Van Bladel K; Bley B
    J Biomed Mater Res; 1998 Mar; 39(4):642-9. PubMed ID: 9492227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative assessment of ureteral stent biomaterial encrustation.
    Tunney MM; Keane PF; Jones DS; Gorman SP
    Biomaterials; 1996 Aug; 17(15):1541-6. PubMed ID: 8853126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of urinary tract biomaterial encrustation using a modified Robbins device continuous flow model.
    Tunney MM; Keane PF; Gorman SP
    J Biomed Mater Res; 1997; 38(2):87-93. PubMed ID: 9178735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and validation of a dynamic flow model simulating encrustation of biomaterials in the urinary tract.
    Gorman SP; Garvin CP; Quigley F; Jones DS
    J Pharm Pharmacol; 2003 Apr; 55(4):461-8. PubMed ID: 12803767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use.
    Tunney MM; Gorman SP
    Biomaterials; 2002 Dec; 23(23):4601-8. PubMed ID: 12322981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technology insight: Novel ureteral stent materials and designs.
    Chew BH; Denstedt JD
    Nat Clin Pract Urol; 2004 Nov; 1(1):44-8. PubMed ID: 16474466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a model for assessment of biomaterial encrustation in the upper urinary tract.
    Tunney MM; Bonner MC; Keane PF; Gorman SP
    Biomaterials; 1996 May; 17(10):1025-9. PubMed ID: 8736739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a novel biodegradable ureteral stent produced from polyurethane and magnesium alloys.
    Jin L; Yao L; Yuan F; Dai G; Xue B
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):665-672. PubMed ID: 32929829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the role of the biomaterial Aquavene in patient reactions to Landmark midline catheters.
    Silverstein B; Witkin KM; Frankos VH; Terr AI
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):60-7. PubMed ID: 9056501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of silicone versus polyurethane ureteral stents: a prospective controlled study.
    Gadzhiev N; Gorelov D; Malkhasyan V; Akopyan G; Harchelava R; Mazurenko D; Kosmala C; Okhunov Z; Petrov S
    BMC Urol; 2020 Feb; 20(1):10. PubMed ID: 32013936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical performance of polyurethane ureteral stents in vitro and ex vivo.
    Gorman SP; Jones DS; Bonner MC; Akay M; Keane PF
    Biomaterials; 1997 Oct; 18(20):1379-83. PubMed ID: 9363338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of various indwelling double-J stents.
    Cormio L; Talja M; Koivusalo A; Mäkisalo H; Wolff H; Ruutu M
    J Urol; 1995 Feb; 153(2):494-6. PubMed ID: 7815632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ureteral double-J stents performances toward encrustation after long-term indwelling in a dynamic in vitro model.
    Cauda V; Chiodoni A; Laurenti M; Canavese G; Tommasi T
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2244-2253. PubMed ID: 27459232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swarming of Proteus mirabilis over ureteral stents: a comparative assessment.
    Watterson JD; Cadieux PA; Stickler D; Reid G; Denstedt JD
    J Endourol; 2003 Sep; 17(7):523-7. PubMed ID: 14565887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicone-hydrocoated ureteral stents encrustation and biofilm formation after 3-week dwell time: results of a prospective randomized multicenter clinical study.
    Barghouthy Y; Wiseman O; Ventimiglia E; Letendre J; Cloutier J; Daudon M; Kleinclauss F; Doizi S; Corrales M; Traxer O
    World J Urol; 2021 Sep; 39(9):3623-3629. PubMed ID: 33688992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Treated Pellethanes: Comparative Quantification of Encrustation in Artificial Urine Solution.
    Cottone CM; Lu S; Wu YX; Guan K; Yoon R; Limfueco L; Hoang T; Ciridon W; Ratner BD; Johnson KR; Patel RM; Landman J; Clayman RV
    J Endourol; 2020 Aug; 34(8):868-873. PubMed ID: 32316757
    [No Abstract]   [Full Text] [Related]  

  • 17. Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections.
    Gultekinoglu M; Tunc Sarisozen Y; Erdogdu C; Sagiroglu M; Aksoy EA; Oh YJ; Hinterdorfer P; Ulubayram K
    Acta Biomater; 2015 Jul; 21():44-54. PubMed ID: 25848724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: in vitro bacterial adhesion and encrustation behavior.
    Park JH; Cho YW; Kwon IC; Jeong SY; Bae YH
    Biomaterials; 2002 Oct; 23(19):3991-4000. PubMed ID: 12162332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle Accumulation in Ureteral Stents Is Governed by Fluid Dynamics: In Vitro Study Using a "Stent-on-Chip" Model.
    Mosayyebi A; Yue QY; Somani BK; Zhang X; Manes C; Carugo D
    J Endourol; 2018 Jul; 32(7):639-646. PubMed ID: 29699424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The impact of ureteral stent surface on encrustation and biofilm formation].
    Tsukanov AY; Akhmetov DS; Blesman AI; Rogachev EA
    Urologiia; 2018 May; (2):40-45. PubMed ID: 29901293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.