These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 9492900)
21. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes. Edlund GL; Halestrap AP Biochem J; 1988 Jan; 249(1):117-26. PubMed ID: 3342001 [TBL] [Abstract][Full Text] [Related]
22. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum. Berginc K; Zakelj S; Levstik L; Ursic D; Kristl A Eur J Pharm Biopharm; 2007 May; 66(2):281-5. PubMed ID: 17129714 [TBL] [Abstract][Full Text] [Related]
23. Lactate transport activity in rat skeletal muscle sarcolemmal vesicles after acute exhaustive exercise. Dubouchaud H; Eydoux N; Granier P; Préfaut C; Mercier J J Appl Physiol (1985); 1999 Sep; 87(3):955-61. PubMed ID: 10484563 [TBL] [Abstract][Full Text] [Related]
24. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. James JH; Fang CH; Schrantz SJ; Hasselgren PO; Paul RJ; Fischer JE J Clin Invest; 1996 Nov; 98(10):2388-97. PubMed ID: 8941658 [TBL] [Abstract][Full Text] [Related]
25. Lactate uptake by skeletal muscle sarcolemmal vesicles decreases after 4 wk of hindlimb unweighting in rats. Dubouchaud H; Granier P; Mercier J; Le Peuch C; Prefaut C J Appl Physiol (1985); 1996 Feb; 80(2):416-21. PubMed ID: 8929578 [TBL] [Abstract][Full Text] [Related]
26. Lactate transport in rat sarcolemmal vesicles after a single bout of submaximal exercise. Eydoux N; Dubouchaud H; Py G; Granier P; Préfaut C; Mercier J Int J Sports Med; 2000 Aug; 21(6):393-9. PubMed ID: 10961513 [TBL] [Abstract][Full Text] [Related]
27. Lactate transport and lactate transporters in skeletal muscle. Bonen A; Baker SK; Hatta H Can J Appl Physiol; 1997 Dec; 22(6):531-52. PubMed ID: 9415827 [TBL] [Abstract][Full Text] [Related]
28. Characteristics of L-lactic acid transport in basal membrane vesicles of human placental syncytiotrophoblast. Inuyama M; Ushigome F; Emoto A; Koyabu N; Satoh S; Tsukimori K; Nakano H; Ohtani H; Sawada Y Am J Physiol Cell Physiol; 2002 Sep; 283(3):C822-30. PubMed ID: 12176739 [TBL] [Abstract][Full Text] [Related]
29. Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis. Juel C Acta Physiol Scand; 1996 Mar; 156(3):369-74. PubMed ID: 8729697 [TBL] [Abstract][Full Text] [Related]
30. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells. Wang Q; Morris ME Drug Metab Dispos; 2007 Aug; 35(8):1393-9. PubMed ID: 17502341 [TBL] [Abstract][Full Text] [Related]
31. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. Mann GE; Zlokovic BV; Yudilevich DL Biochim Biophys Acta; 1985 Oct; 819(2):241-8. PubMed ID: 4041458 [TBL] [Abstract][Full Text] [Related]
32. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi. Wang X; Levi AJ; Halestrap AP Am J Physiol; 1994 Nov; 267(5 Pt 2):H1759-69. PubMed ID: 7977806 [TBL] [Abstract][Full Text] [Related]
33. Lactate transport by skeletal muscle sarcolemmal vesicles. McDermott JC; Bonen A Mol Cell Biochem; 1993 May; 122(2):113-21. PubMed ID: 8232242 [TBL] [Abstract][Full Text] [Related]
34. Trans-stimulation of lactate transport from rat sarcolemmal membrane vesicles. Brown MA; Brooks GA Arch Biochem Biophys; 1994 Aug; 313(1):22-8. PubMed ID: 8053682 [TBL] [Abstract][Full Text] [Related]
35. L(+)-lactate transport in perfused rat skeletal muscle: kinetic characteristics and sensitivity to pH and transport inhibitors. Watt PW; MacLennan PA; Hundal HS; Kuret CM; Rennie MJ Biochim Biophys Acta; 1988 Oct; 944(2):213-22. PubMed ID: 2846055 [TBL] [Abstract][Full Text] [Related]
36. Lactate transport in mammalian ventricle. General properties and relation to K+ fluxes. Shieh RC; Goldhaber JI; Stuart JS; Weiss JN Circ Res; 1994 May; 74(5):829-38. PubMed ID: 8156630 [TBL] [Abstract][Full Text] [Related]
37. Retinal function loss after monocarboxylate transport inhibition. Bui BV; Kalloniatis M; Vingrys AJ Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):584-93. PubMed ID: 14744902 [TBL] [Abstract][Full Text] [Related]
38. The development of insulin receptors and responsiveness is an early marker of differentiation in the muscle cell line L6. Beguinot F; Kahn CR; Moses AC; Smith RJ Endocrinology; 1986 Jan; 118(1):446-55. PubMed ID: 3510122 [TBL] [Abstract][Full Text] [Related]
39. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity. Juel C; Pilegaard H Pflugers Arch; 1998 Jul; 436(4):560-4. PubMed ID: 9683729 [TBL] [Abstract][Full Text] [Related]
40. Carrier-mediated uptake of L-(+)-lactate in plasma membrane vesicles from rat liver. Quintana I; Felipe A; Remesar X; Pastor-Anglada M FEBS Lett; 1988 Aug; 235(1-2):224-8. PubMed ID: 3402597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]