These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9493131)

  • 1. Membrane potassium channels and human bladder tumor cells: II. Growth properties.
    Wondergem R; Cregan M; Strickler L; Miller R; Suttles J
    J Membr Biol; 1998 Feb; 161(3):257-62. PubMed ID: 9493131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of norepinephrine release by ATP-dependent K(+)-channel activators and inhibitors in guinea-pig and human isolated right atrium.
    Oe K; Sperlágh B; Sántha E; Matkó I; Nagashima H; Foldes FF; Vizi ES
    Cardiovasc Res; 1999 Jul; 43(1):125-34. PubMed ID: 10536697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture.
    Woodfork KA; Wonderlin WF; Peterson VA; Strobl JS
    J Cell Physiol; 1995 Feb; 162(2):163-71. PubMed ID: 7822427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent K+ channels in renal ischemia reperfusion injury.
    Rahgozar M; Willgoss DA; Gobé GC; Endre ZH
    Ren Fail; 2003 Nov; 25(6):885-96. PubMed ID: 14669848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane potassium channels and human bladder tumor cells. I. Electrical properties.
    Monen SH; Schmidt PH; Wondergem R
    J Membr Biol; 1998 Feb; 161(3):247-56. PubMed ID: 9493130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-stimulated DNA synthesis through mammalian target of rapamycin (mTOR) is regulated by KATP channels: effects on cell cycle progression in rodent islets.
    Kwon G; Marshall CA; Liu H; Pappan KL; Remedi MS; McDaniel ML
    J Biol Chem; 2006 Feb; 281(6):3261-7. PubMed ID: 16344552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line.
    Sturgess NC; Kozlowski RZ; Carrington CA; Hales CN; Ashford ML
    Br J Pharmacol; 1988 Sep; 95(1):83-94. PubMed ID: 3146398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels.
    Hu H; Sato T; Seharaseyon J; Liu Y; Johns DC; O'Rourke B; Marbán E
    Mol Pharmacol; 1999 Jun; 55(6):1000-5. PubMed ID: 10347240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of sulphonylurea derivatives with vascular ATP-sensitive potassium channels in humans.
    Bijlstra PJ; Lutterman JA; Russel FG; Thien T; Smits P
    Diabetologia; 1996 Sep; 39(9):1083-90. PubMed ID: 8877293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actions of ZD0947, a novel ATP-sensitive K+ channel opener, on membrane currents in human detrusor myocytes.
    Aishima M; Tomoda T; Yunoki T; Nakano T; Seki N; Yonemitsu Y; Sueishi K; Naito S; Ito Y; Teramoto N
    Br J Pharmacol; 2006 Nov; 149(5):542-50. PubMed ID: 17016513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic inhibition impairs ATP-sensitive K+ channel block by sulfonylurea in pancreatic beta-cells.
    Mukai E; Ishida H; Kato S; Tsuura Y; Fujimoto S; Ishida-Takahashi A; Horie M; Tsuda K; Seino Y
    Am J Physiol; 1998 Jan; 274(1):E38-44. PubMed ID: 9458745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia activates ATP-dependent potassium channels in inspiratory neurones of neonatal mice.
    Mironov SL; Langohr K; Haller M; Richter DW
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):755-66. PubMed ID: 9596797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of ATP-sensitive potassium channels functionally expressed in pituitary GH3 cells.
    Wu SN; Li HF; Chiang HT
    J Membr Biol; 2000 Dec; 178(3):205-14. PubMed ID: 11140276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of KATP channel modulation on myocardial glycogen content, lactate, and amino acids in nonischemic and ischemic rat hearts.
    Kristiansen SB; Nielsen-Kudsk JE; Bøtker HE; Nielsen TT
    J Cardiovasc Pharmacol; 2005 May; 45(5):456-61. PubMed ID: 15821441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstituted human cardiac KATP channels: functional identity with the native channels from the sarcolemma of human ventricular cells.
    Babenko AP; Gonzalez G; Aguilar-Bryan L; Bryan J
    Circ Res; 1998 Nov; 83(11):1132-43. PubMed ID: 9831708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of the inhibitory effect of glibenclamide on KATP channels of mammalian skeletal muscle.
    Barrett-Jolley R; Davies NW
    J Membr Biol; 1997 Feb; 155(3):257-62. PubMed ID: 9050449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels.
    del Valle HF; Lascano EC; Negroni JA
    Cardiovasc Res; 2002 Aug; 55(3):642-59. PubMed ID: 12160962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glibenclamide opens ATP-sensitive potassium channels in Xenopus oocyte follicular cells during metabolic stress.
    Guillemare E; Lazdunski M; Honoré E
    Mol Pharmacol; 1995 Mar; 47(3):588-94. PubMed ID: 7700256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KATP channel activation induces ischemic preconditioning of the endothelium in humans in vivo.
    Broadhead MW; Kharbanda RK; Peters MJ; MacAllister RJ
    Circulation; 2004 Oct; 110(15):2077-82. PubMed ID: 15466634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.