These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9493266)

  • 1. The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate.
    Aleshin AE; Zeng C; Bourenkov GP; Bartunik HD; Fromm HJ; Honzatko RB
    Structure; 1998 Jan; 6(1):39-50. PubMed ID: 9493266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate.
    Aleshin AE; Zeng C; Bartunik HD; Fromm HJ; Honzatko RB
    J Mol Biol; 1998 Sep; 282(2):345-57. PubMed ID: 9735292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of non-catalytic ATP to human hexokinase I highlights the structural components for enzyme-membrane association control.
    Rosano C; Sabini E; Rizzi M; Deriu D; Murshudov G; Bianchi M; Serafini G; Magnani M; Bolognesi M
    Structure; 1999 Nov; 7(11):1427-37. PubMed ID: 10574795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation.
    Aleshin AE; Kirby C; Liu X; Bourenkov GP; Bartunik HD; Fromm HJ; Honzatko RB
    J Mol Biol; 2000 Mar; 296(4):1001-15. PubMed ID: 10686099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis.
    Zeng C; Aleshin AE; Hardie JB; Harrison RW; Fromm HJ
    Biochemistry; 1996 Oct; 35(40):13157-64. PubMed ID: 8855953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a phosphate regulatory site and a low affinity binding site for glucose 6-phosphate in the N-terminal half of human brain hexokinase.
    Fang TY; Alechina O; Aleshin AE; Fromm HJ; Honzatko RB
    J Biol Chem; 1998 Jul; 273(31):19548-53. PubMed ID: 9677378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ligand binding on the tryptic digestion pattern of rat brain hexokinase: relationship of ligand-induced conformational changes to catalytic and regulatory functions.
    Smith AD; Wilson JE
    Arch Biochem Biophys; 1991 Nov; 291(1):59-68. PubMed ID: 1929435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The high resolution crystal structure of yeast hexokinase PII with the correct primary sequence provides new insights into its mechanism of action.
    Kuser PR; Krauchenco S; Antunes OA; Polikarpov I
    J Biol Chem; 2000 Jul; 275(27):20814-21. PubMed ID: 10749890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of yeast hexokinase PI in complex with glucose: A classical "induced fit" example revised.
    Kuser P; Cupri F; Bleicher L; Polikarpov I
    Proteins; 2008 Aug; 72(2):731-40. PubMed ID: 18260108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of mammalian hexokinase-1.
    Mulichak AM; Wilson JE; Padmanabhan K; Garavito RM
    Nat Struct Biol; 1998 Jul; 5(7):555-60. PubMed ID: 9665168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of Escherichia coli glycerol kinase variant S58-->W in complex with nonhydrolyzable ATP analogues reveal a putative active conformation of the enzyme as a result of domain motion.
    Bystrom CE; Pettigrew DW; Branchaud BP; O'Brien P; Remington SJ
    Biochemistry; 1999 Mar; 38(12):3508-18. PubMed ID: 10090737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residues putatively involved in binding of ATP and glucose 6-phosphate to a mammalian hexokinase: site-directed mutation at analogous positions in the N- and C-terminal halves of the type I isozyme.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1995 Aug; 321(2):413-20. PubMed ID: 7646067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric regulation of type I hexokinase: A site-directed mutational study indicating location of the functional glucose 6-phosphate binding site in the N-terminal half of the enzyme.
    Sebastian S; Wilson JE; Mulichak A; Garavito RM
    Arch Biochem Biophys; 1999 Feb; 362(2):203-10. PubMed ID: 9989928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation.
    Nawaz MH; Ferreira JC; Nedyalkova L; Zhu H; Carrasco-López C; Kirmizialtin S; Rabeh WM
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29298880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function of interdomain alpha-helix in human brain hexokinase: covalent linkage and catalytic regulation between N- and C-terminal halves.
    Tsai HJ
    J Biomed Sci; 2007 Mar; 14(2):195-202. PubMed ID: 17080299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization.
    Kuettner EB; Kettner K; Keim A; Svergun DI; Volke D; Singer D; Hoffmann R; Müller EC; Otto A; Kriegel TM; Sträter N
    J Biol Chem; 2010 Dec; 285(52):41019-33. PubMed ID: 20943665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of nucleoside triphosphates, inorganic phosphate, and other polyanionic ligands to the N-terminal region of rat brain hexokinase: relationship to regulation of hexokinase activity by antagonistic interactions between glucose 6-phosphate and inorganic phosphate.
    White TK; Wilson JE
    Arch Biochem Biophys; 1990 Feb; 277(1):26-34. PubMed ID: 2306121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional consequences of mutation of highly conserved serine residues, found at equivalent positions in the N- and C-terminal domains of mammalian hexokinases.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1992 Oct; 298(1):271-8. PubMed ID: 1524437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonaggregating mutant of recombinant human hexokinase I exhibits wild-type kinetics and rod-like conformations in solution.
    Aleshin AE; Malfois M; Liu X; Kim CS; Fromm HJ; Honzatko RB; Koch MH; Svergun DI
    Biochemistry; 1999 Jun; 38(26):8359-66. PubMed ID: 10387081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional organization of mammalian hexokinases: characterization of chimeric hexokinases constructed from the N- and C-terminal domains of the rat type I and type II isozymes.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1995 Jan; 316(1):206-14. PubMed ID: 7840618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.