BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 9493269)

  • 1. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii.
    Pieper U; Kapadia G; Mevarech M; Herzberg O
    Structure; 1998 Jan; 6(1):75-88. PubMed ID: 9493269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases.
    Wright DB; Banks DD; Lohman JR; Hilsenbeck JL; Gloss LM
    J Mol Biol; 2002 Oct; 323(2):327-44. PubMed ID: 12381324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis and halophilicity of dihydrolipoamide dehydrogenase from the halophilic archaeon, Haloferax volcanii.
    Jolley KA; Russell RJ; Hough DW; Danson MJ
    Eur J Biochem; 1997 Sep; 248(2):362-8. PubMed ID: 9346289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR-derived folate-bound structure of dihydrofolate reductase 1 from the halophile Haloferax volcanii.
    Boroujerdi AF; Young JK
    Biopolymers; 2009 Feb; 91(2):140-4. PubMed ID: 18825778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs.
    Kastritis PL; Papandreou NC; Hamodrakas SJ
    Int J Biol Macromol; 2007 Oct; 41(4):447-53. PubMed ID: 17675150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-based model for the halophilic adaptation of dihydrofolate reductase from Halobacterium volcanii.
    Böhm G; Jaenicke R
    Protein Eng; 1994 Feb; 7(2):213-20. PubMed ID: 8170925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt-dependent studies of NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii.
    Madern D; Camacho M; Rodríguez-Arnedo A; Bonete MJ; Zaccai G
    Extremophiles; 2004 Oct; 8(5):377-84. PubMed ID: 15221656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The extremely halophilic archaeon Haloferax volcanii has two very different dihydrofolate reductases.
    Ortenberg R; Rozenblatt-Rosen O; Mevarech M
    Mol Microbiol; 2000 Mar; 35(6):1493-505. PubMed ID: 10760149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation.
    Winter JA; Christofi P; Morroll S; Bunting KA
    BMC Struct Biol; 2009 Aug; 9():55. PubMed ID: 19698123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure in an extreme environment: NMR at high salt.
    Binbuga B; Boroujerdi AF; Young JK
    Protein Sci; 2007 Aug; 16(8):1783-7. PubMed ID: 17656587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of salt on the structure, stability, and function of a halophilic dihydrofolate reductase from a hyperhalophilic archaeon, Haloarcula japonica strain TR-1.
    Miyashita Y; Ohmae E; Nakasone K; Katayanagi K
    Extremophiles; 2015 Mar; 19(2):479-93. PubMed ID: 25617115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based analysis of Bacilli and plasmid dihydrofolate reductase evolution.
    Alotaibi M; Reyes BD; Le T; Luong P; Valafar F; Metzger RP; Fogel GB; Hecht D
    J Mol Graph Model; 2017 Jan; 71():135-153. PubMed ID: 27914300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic folding of Haloferax volcanii and Escherichia coli dihydrofolate reductases: haloadaptation by unfolded state destabilization at high ionic strength.
    Gloss LM; Topping TB; Binder AK; Lohman JR
    J Mol Biol; 2008 Mar; 376(5):1451-62. PubMed ID: 18207162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural-based analysis of dihydrofolate reductase evolution.
    Hecht D; Tran J; Fogel GB
    Mol Phylogenet Evol; 2011 Oct; 61(1):212-30. PubMed ID: 21704717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular model of the folate binding site of Pneumocystis carinii dihydrofolate reductase.
    Southerland WM
    J Comput Aided Mol Des; 1994 Apr; 8(2):113-22. PubMed ID: 8064329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase.
    Hicks SN; Smiley RD; Hamilton JB; Howell EE
    Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G.
    Bracken CD; Neighbor AM; Lamlenn KK; Thomas GC; Schubert HL; Whitby FG; Howard BR
    BMC Struct Biol; 2011 May; 11():23. PubMed ID: 21569248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of Escherichia coli dihydrofolate reductase complexed with 5-formyltetrahydrofolate (folinic acid) in two space groups: evidence for enolization of pteridine O4.
    Lee H; Reyes VM; Kraut J
    Biochemistry; 1996 Jun; 35(22):7012-20. PubMed ID: 8679526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic classification of protozoa based on the structure of the linker domain in the bifunctional enzyme, dihydrofolate reductase-thymidylate synthase.
    O'Neil RH; Lilien RH; Donald BR; Stroud RM; Anderson AC
    J Biol Chem; 2003 Dec; 278(52):52980-7. PubMed ID: 14555647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of gshA, a gene encoding the glutamate-cysteine ligase in the halophilic archaeon Haloferax volcanii.
    Malki L; Yanku M; Borovok I; Cohen G; Mevarech M; Aharonowitz Y
    J Bacteriol; 2009 Aug; 191(16):5196-204. PubMed ID: 19525351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.