BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9493374)

  • 41. Alterations in the electron transfer chain in mutant strains of Escherichia coli lacking phosphatidylethanolamine.
    Mileykovskaya EI; Dowhan W
    J Biol Chem; 1993 Nov; 268(33):24824-31. PubMed ID: 8227044
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool.
    Marres CA; de Vries S
    Biochim Biophys Acta; 1991 Mar; 1057(1):51-63. PubMed ID: 1849003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant of Escherichia coli K12.
    Singh AP; Bragg PD
    Biochim Biophys Acta; 1975 Aug; 396(2):229-41. PubMed ID: 50861
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of a bound ubiquinone on reactions of the Escherichia coli cytochrome bo with ubiquinol and dioxygen.
    Mogi T; Sato-Watanabe M; Miyoshi H; Orii Y
    FEBS Lett; 1999 Aug; 457(1):61-4. PubMed ID: 10486564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electron flow and heme-heme interaction between cytochromes b-558, b-595 and d in a terminal oxidase of Escherichia coli.
    Hata-Tanaka A; Matsuura K; Itoh S; Anraku Y
    Biochim Biophys Acta; 1987 Sep; 893(2):289-95. PubMed ID: 3040093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.
    Grabbe R; Schmitz RA
    Eur J Biochem; 2003 Apr; 270(7):1555-66. PubMed ID: 12654011
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1.
    Maier TM; Myers CR
    BMC Microbiol; 2004 Jun; 4():23. PubMed ID: 15212692
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anaerobic electron transport in anaerobic flagellum formation in Escherichia coli.
    Hertz R; Bar-Tana J
    J Bacteriol; 1977 Dec; 132(3):1034-5. PubMed ID: 336600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis.
    Fang H; Lin RJ; Gennis RB
    J Biol Chem; 1989 May; 264(14):8026-32. PubMed ID: 2656671
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fumarate reduction in Proteus mirabilis.
    Van der Beek EG; Oltmann LF; Stouthamer AH
    Arch Microbiol; 1976 Nov; 110(23):195-206. PubMed ID: 189721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. YidC is involved in the biogenesis of anaerobic respiratory complexes in the inner membrane of Escherichia coli.
    Price CE; Driessen AJ
    J Biol Chem; 2008 Oct; 283(40):26921-7. PubMed ID: 18635537
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The electron transport system of the anaerobic Propionibacterium shermanii: cytochrome and inhibitor studies.
    Schwartz AC; Sporkenbach J
    Arch Microbiol; 1975 Mar; 102(3):261-73. PubMed ID: 168827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12.
    Poole RK; Haddock BA
    Biochem J; 1974 Oct; 144(1):77-85. PubMed ID: 4156832
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The electron transport chain of Escherichia coli grown anaerobically with fumarate as terminal electron acceptor: an electron paramagnetic resonance study.
    Ingledew WJ
    J Gen Microbiol; 1983 Jun; 129(6):1651-9. PubMed ID: 6313851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specific overproduction and purification of the cytochrome b558 component of the cytochrome d complex from Escherichia coli.
    Green GN; Lorence RM; Gennis RB
    Biochemistry; 1986 May; 25(9):2309-14. PubMed ID: 3013298
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.
    Barz WP; Verméglio A; Francia F; Venturoli G; Melandri BA; Oesterhelt D
    Biochemistry; 1995 Nov; 34(46):15248-58. PubMed ID: 7578140
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Function of ubiquinone in the electron transport system of Pseudomonas aeruginosa grown aerobically.
    Matsushita K; Yamada M; Shinagawa E; Adachi O; Ameyama M
    J Biochem; 1980 Sep; 88(3):757-64. PubMed ID: 6774977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The frdR gene of Escherichia coli globally regulates several operons involved in anaerobic growth in response to nitrate.
    Kalman LV; Gunsalus RP
    J Bacteriol; 1988 Feb; 170(2):623-9. PubMed ID: 3276662
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Changes in the electron transport chain in Escherichia coli depending on the cultivation conditions and growth phase].
    Trutko SM; Golovchenko NP; Akimenko VK
    Mikrobiologiia; 1978; 47(1):5-10. PubMed ID: 206807
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o.
    Tsai PS; Nägeli M; Bailey JE
    Biotechnol Bioeng; 2002 Sep; 79(5):558-67. PubMed ID: 12209827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.