These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 9493414)

  • 1. Monte Carlo simulation of electron backscattering from compounds with low mean atomic number.
    Howell PG; Boyde A
    Scanning; 1998 Jan; 20(1):45-9. PubMed ID: 9493414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accurate approximation for the highly efficient sampling of polar scattering angle of electron elastic single-scattering events.
    Pasciak AS; Ford JR
    Scanning; 2006; 28(6):333-41. PubMed ID: 17181135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo calculations of electrons in aluminum.
    Aydin A
    Appl Radiat Isot; 2009 Feb; 67(2):281-6. PubMed ID: 18541434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of backscatter from lead for clinical electron beams using EGSnrc.
    Chow JC; Grigorov GN
    Med Phys; 2008 Apr; 35(4):1241-50. PubMed ID: 18491516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of elastic and inelastic scattering in giving electrons tortuous paths in matter.
    Turner JE; Hamm RN
    Health Phys; 1995 Sep; 69(3):378-84. PubMed ID: 7635734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved electron multiple-scattering distribution for Monte Carlo transport simulation.
    Al-Beteri AA; Raeside DE
    Med Phys; 1988; 15(3):351-7. PubMed ID: 3405137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Monte Carlo investigation of electron backscattering.
    Frujinoiu C; Brey RR
    Radiat Prot Dosimetry; 2001; 97(3):223-9. PubMed ID: 11843337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed Monte Carlo Simulation of electron transport and electron energy loss spectra.
    Attarian Shandiz M; Salvat F; Gauvin R
    Scanning; 2016 Nov; 38(6):475-491. PubMed ID: 26512795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.
    Liljequist D
    Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version.
    Kawrakow I
    Med Phys; 2000 Mar; 27(3):485-98. PubMed ID: 10757601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sensitivity of backscattering coefficients to elastic scattering cross-sections and electron stopping powers.
    Walker CG; Matthew JA; El-Gomati MM
    Scanning; 2014; 36(2):241-5. PubMed ID: 23649939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic scattering cross section models used for Monte Carlo simulation of electron tracks in media of biological and medical interest.
    Liljequist D; Liamsuwan T; Nikjoo H
    Int J Radiat Biol; 2012 Jan; 88(1-2):29-37. PubMed ID: 21756208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binary-Encounter-Bethe ionisation cross sections for simulation of DNA damage by the direct effect of ionising radiation.
    Plante I; Cucinotta FA
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):19-23. PubMed ID: 25870431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron beam transport in heterogeneous slab media from MeV down to eV.
    Yousfi M; Leger J; Loiseau JF; Held B; Eichwald O; Defoort B; Dupillier JM
    Radiat Prot Dosimetry; 2006; 122(1-4):46-52. PubMed ID: 17151011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations.
    Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H
    Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron mass scattering powers: Monte Carlo and analytical calculations.
    Li XA; Rogers DW
    Med Phys; 1995 May; 22(5):531-41. PubMed ID: 7643788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation for energy deposition of an ionisation chamber based on the equivalent electron source theory and experimental verification for the theory.
    Ren X; Zhang A; Song H; Hu Z; Chen M; Wang G
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):58-61. PubMed ID: 21493614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM.
    Ruan Z; Zeng RG; Ming Y; Zhang M; Da B; Mao SF; Ding ZJ
    Phys Chem Chem Phys; 2015 Jul; 17(27):17628-37. PubMed ID: 26082190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An empirical energy loss equation of electrons.
    Zhenyu T; Yancai H
    Scanning; 2002; 24(1):46-51. PubMed ID: 11866345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.