These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 9493414)
21. Energy-loss straggling algorithms for Monte Carlo electron transport. Chibani O Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312 [TBL] [Abstract][Full Text] [Related]
22. Room scatter effects in Total Skin Electron Irradiation: Monte Carlo simulation study. Nevelsky A; Borzov E; Daniel S; Bar-Deroma R J Appl Clin Med Phys; 2017 Jan; 18(1):196-201. PubMed ID: 28291915 [TBL] [Abstract][Full Text] [Related]
23. Monte Carlo track structure for radiation biology and space applications. Nikjoo H; Uehara S; Khvostunov IG; Cucinotta FA; Wilson WE; Goodhead DT Phys Med; 2001; 17 Suppl 1():38-44. PubMed ID: 11770535 [TBL] [Abstract][Full Text] [Related]
24. The effect of scattering foil parameters on electron-beam Monte Carlo calculations. Bieda MR; Antolak JA; Hogstrom KR Med Phys; 2001 Dec; 28(12):2527-34. PubMed ID: 11797957 [TBL] [Abstract][Full Text] [Related]
25. Super-Monte Carlo: a 3-D electron beam dose calculation algorithm. Keall PJ; Hoban PW Med Phys; 1996 Dec; 23(12):2023-34. PubMed ID: 8994167 [TBL] [Abstract][Full Text] [Related]
26. An improved electron energy-loss straggling algorithm for Monte Carlo transport codes. Weinhous MS; Nath R Med Phys; 1984; 11(3):254-8. PubMed ID: 6738450 [TBL] [Abstract][Full Text] [Related]
27. Monte Carlo simulation of water radiolysis for low-energy charged particles. Uehara S; Nikjoo H J Radiat Res; 2006 Mar; 47(1):69-81. PubMed ID: 16571920 [TBL] [Abstract][Full Text] [Related]
28. Electron inelastic mean free path formula and CSDA-range calculation in biological compounds for low and intermediate energies. Akar A; Gümüş H; Okumuşoğlu NT Appl Radiat Isot; 2006 May; 64(5):543-50. PubMed ID: 16388951 [TBL] [Abstract][Full Text] [Related]
29. Quantum versus classical Monte Carlo simulation of low-energy electron transport in condensed amorphous media. Thomson RM; Kawrakow I Phys Med; 2018 Oct; 54():179-188. PubMed ID: 30007841 [TBL] [Abstract][Full Text] [Related]
30. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN. Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581 [TBL] [Abstract][Full Text] [Related]
31. Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE. Vilches M; García-Pareja S; Guerrero R; Anguiano M; Lallena AM Med Phys; 2009 Sep; 36(9):3964-70. PubMed ID: 19810469 [TBL] [Abstract][Full Text] [Related]
32. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes. Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947 [TBL] [Abstract][Full Text] [Related]
33. Mean energy, energy-range relationships and depth-scaling factors for clinical electron beams. Ding GX; Rogers DW Med Phys; 1996 Mar; 23(3):361-76. PubMed ID: 8815379 [TBL] [Abstract][Full Text] [Related]
34. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code. Chow JC; Leung MK Med Phys; 2008 Jun; 35(6):2383-90. PubMed ID: 18649471 [TBL] [Abstract][Full Text] [Related]
35. Cross section calculations for electron scattering from DNA and RNA bases. Moejko P; Sanche L Radiat Environ Biophys; 2003 Oct; 42(3):201-11. PubMed ID: 14523567 [TBL] [Abstract][Full Text] [Related]
36. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels. Bartzsch S; Oelfke U Med Phys; 2013 Nov; 40(11):111714. PubMed ID: 24320422 [TBL] [Abstract][Full Text] [Related]
37. Formation of ion clusters by low-energy electrons in nanometric targets: experiment and Monte Carlo simulation. Bantsar A; Grosswendt B; Pszona S Radiat Prot Dosimetry; 2006; 122(1-4):82-5. PubMed ID: 17251251 [TBL] [Abstract][Full Text] [Related]
38. Simulation and measurement of the radiation field of the 1.4-GeV electron beam dump of the FERMI free-electron laser. Fröhlich L; Casarin K; Vascotto A Radiat Prot Dosimetry; 2015 Feb; 163(2):141-7. PubMed ID: 24757175 [TBL] [Abstract][Full Text] [Related]
39. Simulating the Feasibility of Using Liquid Micro-Jets for Determining Electron-Liquid Scattering Cross-Sections. Muccignat DL; Stokes PW; Cocks DG; Gascooke JR; Jones DB; Brunger MJ; White RD Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328775 [TBL] [Abstract][Full Text] [Related]
40. Improved modeling of multiple scattering in the Voxel Monte Carlo model. Kawrakow I Med Phys; 1997 Apr; 24(4):505-17. PubMed ID: 9127300 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]