These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 949342)

  • 21. A method for quantitating the contributions of the pathways of acetoacetate formation and its application to diabetic ketosis in vivo.
    Ohgaku S; Brady PS; Schumann WC; Bartsch GE; Margolis JM; Kumaran K; Landau SB; Landau BR
    J Biol Chem; 1982 Aug; 257(16):9283-9. PubMed ID: 6809734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acetoacetate and D-(-)-beta-hydroxybutyrate as precursors for sterol synthesis by calf oligodendrocytes in suspension culture: extramitochondrial pathway for acetoacetate metabolism.
    Pleasure D; Lichtman C; Eastman S; Lieb M; Abramsky O; Silberberg D
    J Neurochem; 1979 May; 32(5):1447-50. PubMed ID: 35588
    [No Abstract]   [Full Text] [Related]  

  • 23. The fuel of respiration of rat kidney cortex.
    Weidemann MJ; Krebs HA
    Biochem J; 1969 Apr; 112(2):149-66. PubMed ID: 5805283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Competition among oxidizable substrates in brains of young and adult rats. Dissociated cells.
    Roeder LM; Tildon JT; Holman DC
    Biochem J; 1984 Apr; 219(1):131-5. PubMed ID: 6426469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies with leucine, beta-hydroxybutyrate and ATP citrate lyase-deficient beta cells support the acetoacetate pathway of insulin secretion.
    Macdonald MJ; Hasan NM; Longacre MJ
    Biochim Biophys Acta; 2008; 1780(7-8):966-72. PubMed ID: 18439432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ketone body utilization for energy production and lipid synthesis in isolated rat brain capillaries.
    Homayoun P; Bourre JM
    Biochim Biophys Acta; 1987 Dec; 922(3):345-50. PubMed ID: 3689815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilization of ketone bodies and glucose by established neural cell lines.
    Roeder LM; Poduslo SE; Tildon JT
    J Neurosci Res; 1982; 8(4):671-82. PubMed ID: 7161845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feasibility of pathways for transfer of acyl groups from mitochondria to the cytosol to form short chain acyl-CoAs in the pancreatic beta cell.
    MacDonald MJ; Smith AD; Hasan NM; Sabat G; Fahien LA
    J Biol Chem; 2007 Oct; 282(42):30596-606. PubMed ID: 17724028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of methylmalonate on ketone body metabolism in developing rat brain.
    Patel MS; Owen OE; Raefsky C
    Life Sci; 1976 Jul; 19(1):41-7. PubMed ID: 940434
    [No Abstract]   [Full Text] [Related]  

  • 30. Provenance of the acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo.
    Tucek S; Cheng SC
    J Neurochem; 1974 Jun; 22(6):893-914. PubMed ID: 4853931
    [No Abstract]   [Full Text] [Related]  

  • 31. Role of acetoacetyl-CoA synthetase in acetoacetate utilization by tumor cells.
    Tisdale MJ
    Cancer Biochem Biophys; 1984 Jun; 7(2):101-7. PubMed ID: 6147189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of cytosolic and mitochondrial acetyl-CoA syntheses to the activation of lipogenic acetate in rat liver.
    Goldberg RP; Brunengraber H
    Adv Exp Med Biol; 1980; 132():413-8. PubMed ID: 6106997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acetyl-CoA production and utilization during growth of the facultative methylotroph Pseudomonas AM1 on ethanol, malonate and 3-hydroxybutyrate.
    Taylor IJ; Anthony C
    J Gen Microbiol; 1976 Jul; 95(1):134-43. PubMed ID: 8584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The oxidation of glucose, ketone bodies and acetate by the brain of normal and ketonaemic sheep.
    Lindsay DB; Setchell BP
    J Physiol; 1976 Aug; 259(3):801-23. PubMed ID: 957265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ketone body utilization in duodenum. Differential effect of fasting on lipogenesis from acetoacetate and 3-hydroxybutyrate.
    Caamaño GJ; Sánchez-del-Castillo MA; Iglesias J; García-Peregrín E; Linares A
    Biochem Int; 1989 Oct; 19(4):855-61. PubMed ID: 2575906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acetoacetate and glucose as substrates for lipid synthesis by rat brain oligodendrocytes and astrocytes in serum-free culture.
    Koper JW; Zeinstra EC; Lopes-Cardozo M; van Golde LM
    Biochim Biophys Acta; 1984 Oct; 796(1):20-6. PubMed ID: 6487643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells.
    Zambell KL; Fitch MD; Fleming SE
    J Nutr; 2003 Nov; 133(11):3509-15. PubMed ID: 14608066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo.
    McAllister A; Allison SP; Randle PJ
    Biochem J; 1973 Aug; 134(4):1067-81. PubMed ID: 4762752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of citrate, acetylcarnitine, acetate, pyruvate and glucose for the synthesis of acetylcholine in rat brain slices.
    Dolezal V; Tucek S
    J Neurochem; 1981 Apr; 36(4):1323-30. PubMed ID: 6790669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative effect of fasting on acetoacetate and D-3-hydroxybutyrate metabolism in the newborn chick.
    Linares A; Diaz R; Caamaño GJ; Gonzalez FJ; Garcia-Peregrin E
    Biochem Int; 1992 Dec; 28(4):683-91. PubMed ID: 1482404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.