BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 949504)

  • 1. Occurrence of free creatine, phosphocreatine and creatine phosphokinase in adipose tissue.
    Berlet HH; Bonsmann I; Birringer H
    Biochim Biophys Acta; 1976 Jun; 437(1):166-74. PubMed ID: 949504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does muscle creatine phosphokinase have access to the total pool of phosphocreatine plus creatine?
    Hochachka PW; Mossey MK
    Am J Physiol; 1998 Mar; 274(3):R868-72. PubMed ID: 9530257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The creatine-creatine phosphate shuttle for energy transport-compartmentation of creatine phosphokinase in muscle.
    Erickson-Viitanen S; Geiger P; Yang WC; Bessman SP
    Adv Exp Med Biol; 1982; 151():115-25. PubMed ID: 6217725
    [No Abstract]   [Full Text] [Related]  

  • 4. [Effect of vitamin E deficiency on creatine phosphokinase activity and creatine phosphate levels in the heart muscle].
    Golubeva LIu; Dzhaparidze LM
    Vopr Med Khim; 1986; 32(6):121-2. PubMed ID: 3811276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of creatine and phosphocreatine accumulation in skeletal muscle and heart.
    Fitch CD; Chevli R
    Metabolism; 1980 Jul; 29(7):686-90. PubMed ID: 7382831
    [No Abstract]   [Full Text] [Related]  

  • 6. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat.
    Kazak L; Chouchani ET; Jedrychowski MP; Erickson BK; Shinoda K; Cohen P; Vetrivelan R; Lu GZ; Laznik-Bogoslavski D; Hasenfuss SC; Kajimura S; Gygi SP; Spiegelman BM
    Cell; 2015 Oct; 163(3):643-55. PubMed ID: 26496606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle.
    Ponticos M; Lu QL; Morgan JE; Hardie DG; Partridge TA; Carling D
    EMBO J; 1998 Mar; 17(6):1688-99. PubMed ID: 9501090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and phosphorylation of (14C) creatine by mouse cardiac muscle in vivo.
    Berlet HH
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():183-92. PubMed ID: 1226433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creatine metabolism in skeletal muscle of cold-acclimated rats.
    Kurahashi M; Kuroshima A
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Jan; 44(1):12-6. PubMed ID: 627492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma.
    Patra S; Bera S; SinhaRoy S; Ghoshal S; Ray S; Basu A; Schlattner U; Wallimann T; Ray M
    FEBS J; 2008 Jun; 275(12):3236-47. PubMed ID: 18485002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function.
    Guzun R; Timohhina N; Tepp K; Gonzalez-Granillo M; Shevchuk I; Chekulayev V; Kuznetsov AV; Kaambre T; Saks VA
    Amino Acids; 2011 May; 40(5):1333-48. PubMed ID: 21390528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid.
    Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM
    Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free ADP levels in transgenic mouse liver expressing creatine kinase. Effects of enzyme activity, phosphagen type, and substrate concentration.
    Brosnan MJ; Chen L; Van Dyke TA; Koretsky AP
    J Biol Chem; 1990 Dec; 265(34):20849-55. PubMed ID: 2249991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ability of a phosphocreatine-myofibrillar creatine kinase system to prevent the rigor tension of myocardial fibers].
    Veksler VI; Kapel'ko VI
    Biofizika; 1985; 30(2):301-5. PubMed ID: 3986231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin phosphocreatine.
    Zemtsov A
    Skin Res Technol; 2007 May; 13(2):115-8. PubMed ID: 17374051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species.
    Ipsiroglu OS; Stromberger C; Ilas J; Höger H; Mühl A; Stöckler-Ipsiroglu S
    Life Sci; 2001 Aug; 69(15):1805-15. PubMed ID: 11665842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphocreatine content of freeze-clamped muscle: influence of creatine kinase inhibition.
    Brault JJ; Abraham KA; Terjung RL
    J Appl Physiol (1985); 2003 May; 94(5):1751-6. PubMed ID: 12514168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The futile creatine cycle and the synthesis of fatty acids in inguinal white adipose tissue from growing rats, submitted to a hypoprotein-hyperglycidic diet for 15 days.
    Allebrandt Neto EW; Rondon E Silva J; Santos SF; de França Lemes SA; Kawashita NH; Peron Pereira M
    Lipids; 2024 Jan; 59(1):3-12. PubMed ID: 38223990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.