These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 949505)

  • 41. Bioinformatics and multiepitope DNA immunization to design rational snake antivenom.
    Wagstaff SC; Laing GD; Theakston RD; Papaspyridis C; Harrison RA
    PLoS Med; 2006 Jun; 3(6):e184. PubMed ID: 16737347
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antigenic cross-reactivity and species-specific identification of Pseudocerastes persicus fieldi snake venom.
    Ibrahim NM; El-Kady EM
    Toxicon; 2016 Sep; 119():194-202. PubMed ID: 27319296
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel transcripts in the maxillary venom glands of advanced snakes.
    Fry BG; Scheib H; de L M Junqueira de Azevedo I; Silva DA; Casewell NR
    Toxicon; 2012 Jun; 59(7-8):696-708. PubMed ID: 22465490
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nerve growth factor from Crotalus adamenteus snake venom.
    Perez-Polo JR; Bomar H; Beck C; Hall K
    J Biol Chem; 1978 Sep; 253(17):6140-8. PubMed ID: 681343
    [No Abstract]   [Full Text] [Related]  

  • 45. Cross neutralization of coral snake venoms by commercial Australian snake antivenoms.
    Ramos HR; Vassão RC; de Roodt AR; Santos E Silva EC; Mirtschin P; Ho PL; Spencer PJ
    Clin Toxicol (Phila); 2017 Jan; 55(1):33-39. PubMed ID: 27595162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of the effect of various antisera and cobra venom factor on inflammatory reactions in guinea-pig skin. II. The Arthus reaction and the local Shwartzman reaction.
    Lewis E; Turk JL
    J Pathol; 1975 Feb; 115(2):111-25. PubMed ID: 125318
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.
    Brahma RK; McCleary RJ; Kini RM; Doley R
    Toxicon; 2015 Jan; 93():1-10. PubMed ID: 25448392
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intraspecific differences in the immunochemical reactivity and neutralization of venom from Argentinean Bothrops (Rhinocerophis) alternatus by specific experimental antivenoms.
    Lanari LC; Alagón A; Costa de Oliveira V; Laskowicz RD; Boyer L; Lago NR; Alejandro A; de Roodt AR
    Toxicon; 2014 Jul; 85():31-45. PubMed ID: 24769139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein Profile Analysis of Two Australian Snake Venoms by One- Dimensional Gel Electrophoresis and MS/MS Experiments.
    Georgieva D; Hildebrand D; Simas R; Coronado MA; Kwiatkowski M; Schlüter H; Arni R; Spencer P; Betzel C
    Curr Med Chem; 2017; 24(17):1892-1908. PubMed ID: 28571558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation, characterization and antigenic cross-reactivities of the major hemorrhagin from Cryptelytrops purpureomaculatus venom.
    Fung SY; Tan NH
    Indian J Exp Biol; 2013 Dec; 51(12):1063-9. PubMed ID: 24579371
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunological properties of antivenins. II. Univalent Naja haje antivenin.
    Hassan F; El-Hawary MF
    Am J Trop Med Hyg; 1976 Mar; 25(2):347-50. PubMed ID: 816220
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cross neutralization of dangerous snake venoms from Africa and the Middle East using the VACSERA polyvalent antivenom. Egyptian Organization for Biological Products & Vaccines.
    Seddik SS; Wanas S; Helmy MH; Hashem M
    J Nat Toxins; 2002 Dec; 11(4):329-35. PubMed ID: 12503876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and discrimination of snake venoms from Egyptian elapids.
    Ibrahim NM; El-Kady EM; Katamesh RA; El-Borei IH; Wahby AF
    Toxicon; 2013 Mar; 63():88-97. PubMed ID: 23220490
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diversity of toxic components from the venom of the evolutionarily distinct black whip snake, Demansia vestigiata.
    St Pierre L; Birrell GW; Earl ST; Wallis TP; Gorman JJ; de Jersey J; Masci PP; Lavin MF
    J Proteome Res; 2007 Aug; 6(8):3093-107. PubMed ID: 17608513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization and immunological comparison of isoenzymes of phospholipases A2 from snake venoms of different genera and families.
    Chiou SH; Chuang LY; Chang CC
    Biochem Int; 1991 Dec; 25(6):1003-11. PubMed ID: 1810246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Biological and immunological researches on snake venom. V. Application of the immunochemical technics to the titration of specific antibodies to the alpha toxin of Naja nigricollis venom (author's transl)].
    Mangalo R; Fouque F; Boquet P
    Ann Immunol (Paris); 1977; 128C(4-5):841-50. PubMed ID: 900896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micrurus snake species: Venom immunogenicity, antiserum cross-reactivity and neutralization potential.
    Tanaka GD; Sant'Anna OA; Marcelino JR; Lustoza da Luz AC; Teixeira da Rocha MM; Tambourgi DV
    Toxicon; 2016 Jul; 117():59-68. PubMed ID: 27045363
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Snake fangs from the Lower Miocene of Germany: evolutionary stability of perfect weapons.
    Kuch U; Müller J; Mödden C; Mebs D
    Naturwissenschaften; 2006 Feb; 93(2):84-7. PubMed ID: 16344981
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation and characterization of nerve growth factor from the venom of Naja naja atra.
    Furukawa S; Hayashi K
    J Biochem; 1976 Nov; 80(5):1001-9. PubMed ID: 1002678
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Immunological cross-reactivity of phospholipase A2 from snake venoms.
    Huang HL; Chuang LY; Chang CC
    Gaoxiong Yi Xue Ke Xue Za Zhi; 1985 Aug; 1(8):505-14. PubMed ID: 2454323
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.