BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 949506)

  • 21. Thermally induced conformational transition of double-stranded xanthan in aqueous salt solutions.
    Kitamura S; Takeo K; Kuge T; Stokke BT
    Biopolymers; 1991 Oct; 31(11):1243-55. PubMed ID: 1777578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.
    Miyawaki O; Omote C; Matsuhira K
    Biopolymers; 2015 Dec; 103(12):685-91. PubMed ID: 26215282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic light scattering studies of irradiated kappa carrageenan.
    Abad LV; Nasimova IR; Relleve LS; Aranilla CT; De la Rosa AM; Shibayama M
    Int J Biol Macromol; 2004 Apr; 34(1-2):81-8. PubMed ID: 15178013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of cationic size on gelation temperature and properties of gelatin hydrogels.
    Chatterjee S; Bohidar HB
    Int J Biol Macromol; 2005 Mar; 35(1-2):81-8. PubMed ID: 15769519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gel--sol transition in kappa-carrageenan systems: microviscosity of hydrophobic microdomains, dynamic rheology and molecular conformation.
    Hugerth A; Nilsson S; Sundelöf LO
    Int J Biol Macromol; 1999 Oct; 26(1):69-76. PubMed ID: 10520958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coil-helix transition of iota-carrageenan as a function of chain regularity.
    van de Velde F; Rollema HS; Grinberg NV; Burova TV; Grinberg VY; Tromp RH
    Biopolymers; 2002 Nov; 65(4):299-312. PubMed ID: 12382290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative studies on the conformational change and aggregation behavior of irradiated carrageenans and agar by dynamic light scattering.
    Abad L; Okabe S; Shibayama M; Kudo H; Saiki S; Aranilla C; Relleve L; de la Rosa A
    Int J Biol Macromol; 2008 Jan; 42(1):55-61. PubMed ID: 17977594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of elasticity on the syneresis properties of κ-carrageenan gels.
    Ako K
    Carbohydr Polym; 2015 Jan; 115():408-14. PubMed ID: 25439912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of osmotic and weight pressure on water release from polysaccharide ionic gels.
    Ako K
    Carbohydr Polym; 2017 Aug; 169():376-384. PubMed ID: 28504158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Internally self-assembled thermoreversible gelling emulsions: ISAsomes in methylcellulose, kappa-carrageenan, and mixed hydrogels.
    Tomsic M; Guillot S; Sagalowicz L; Leser ME; Glatter O
    Langmuir; 2009 Aug; 25(16):9525-34. PubMed ID: 19505132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interpenetrating network formation in agarose--kappa-carrageenan gel composites.
    Amici E; Clark AH; Normand V; Johnson NB
    Biomacromolecules; 2002; 3(3):466-74. PubMed ID: 12005516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rheology of κ/ι-hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation.
    Torres MD; Chenlo F; Moreira R
    Int J Biol Macromol; 2016 May; 86():418-24. PubMed ID: 26827757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational changes in iota- and kappa-carrageenans induced by complex formation with bovine beta-casein.
    Burova TV; Grinberg NV; Grinberg VY; Usov AI; Tolstoguzov VB; Kruif CG
    Biomacromolecules; 2007 Feb; 8(2):368-75. PubMed ID: 17291059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.
    Xu Y; Wang C; Tam KC; Li L
    Langmuir; 2004 Feb; 20(3):646-52. PubMed ID: 15773087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fragmentation and modification of iota-carrageenan and characterisation of the polysaccharide order-disorder transition in solution.
    Rees DA; Williamson FB; Frangou SA; Morris ER
    Eur J Biochem; 1982 Feb; 122(1):71-9. PubMed ID: 7060570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small-angle X-ray scattering of kappa- and iota-carrageenan in aqueous and in salt solutions.
    Denef B; Mischenko N; Koch MH; Reynaers H
    Int J Biol Macromol; 1996 Apr; 18(3):151-9. PubMed ID: 8729026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase diagrams of hybrid carrageenans extracted from Ahnfeltiopsis devoniensis and Chondrus crispus.
    Torres MD; Azevedo G; Hilliou L
    Carbohydr Polym; 2016 Jan; 136():449-58. PubMed ID: 26572375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of cations on texture, compressive elastic modulus, sol-gel transition and freeze-thaw properties of kappa-carrageenan gel.
    Wang Y; Yuan C; Cui B; Liu Y
    Carbohydr Polym; 2018 Dec; 202():530-535. PubMed ID: 30287032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex coacervation of scallop (Patinopecten yessoensis) male gonad hydrolysates and κ-carrageenan: Effect of NaCl and KCl.
    Yan JN; Nie B; Jiang XY; Han JR; Du YN; Wu HT
    Food Res Int; 2020 Nov; 137():109659. PubMed ID: 33233238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unperturbed dimensions of Carrageenans in different salt solutions.
    Marcelo G; Saiz E; Tarazona MP
    Biophys Chem; 2005 Mar; 113(3):201-8. PubMed ID: 15620505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.