These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 949525)
1. Effect of heteroporosity on flux equations for membranes. Wendt RP; Mason EA; Bresler EH Biophys Chem; 1976 May; 4(3):237-47. PubMed ID: 949525 [TBL] [Abstract][Full Text] [Related]
2. Appraisal of equations for neutral solute flux across porous sieving membranes. Bresler EH; Mason EA; Wendt RP Biophys Chem; 1976 May; 4(3):229-36. PubMed ID: 949524 [TBL] [Abstract][Full Text] [Related]
3. On equations for combined convective and diffusive transport of neutral solute across porous membranes. Bresler EH; Groome LJ Am J Physiol; 1981 Nov; 241(5):F469-76. PubMed ID: 7304743 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of osmotic flow in porous membranes. Anderson JL; Malone DM Biophys J; 1974 Dec; 14(12):957-82. PubMed ID: 4429773 [TBL] [Abstract][Full Text] [Related]
5. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. II. Inequality of phenomenological and tracer solute permeabilities. Friedman MH; Meyer RA Biophys J; 1981 Jun; 34(3):545-57. PubMed ID: 7248474 [TBL] [Abstract][Full Text] [Related]
6. General continuum analysis of transport through pores. II. Nonuniform pores. Levitt DG Biophys J; 1975 Jun; 15(6):553-63. PubMed ID: 1148358 [TBL] [Abstract][Full Text] [Related]
7. Measurement of the permeability of biological membranes. Application to the glomerular wall. Verniory A; Du Bois R; Decoodt P; Gassee JP; Lambert PP J Gen Physiol; 1973 Oct; 62(4):489-507. PubMed ID: 4755850 [TBL] [Abstract][Full Text] [Related]
8. Transport of macromolecules across microvascular walls: the two-pore theory. Rippe B; Haraldsson B Physiol Rev; 1994 Jan; 74(1):163-219. PubMed ID: 8295933 [TBL] [Abstract][Full Text] [Related]
9. Permeability of artificial membranes to a pluridisperse solution of 125I-polyvinylpyrrolidone. Du Bois R; Stoupel E Biophys J; 1976 Dec; 16(12):1427-45. PubMed ID: 990395 [TBL] [Abstract][Full Text] [Related]
10. Diffusion and convection across heteroporous membranes: a simple macroscopic equation. Groome LJ; Kinasewitz GT; Diana JN Microvasc Res; 1983 Nov; 26(3):307-22. PubMed ID: 6656666 [TBL] [Abstract][Full Text] [Related]
11. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes. Mochizuki S; Zydney AL Biotechnol Prog; 1992; 8(6):553-61. PubMed ID: 1369038 [TBL] [Abstract][Full Text] [Related]
12. Diffusive and convective solute transport through hemodialysis membranes: a hydrodynamic analysis. Langsdorf LJ; Zydney AL J Biomed Mater Res; 1994 May; 28(5):573-82. PubMed ID: 7517941 [TBL] [Abstract][Full Text] [Related]
13. New formulation of water and macromolecular flux which corrects for non-ideality: theory and derivation, predictions, and experimental results. Katz MA J Theor Biol; 1985 Jan; 112(2):369-401. PubMed ID: 3982044 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear Kedem-Katchalsky model equations of the volume flux of homogeneous non-electrolyte solutions in double-membrane system. Slezak A; Bryll A Polim Med; 2004; 34(4):45-52. PubMed ID: 15850297 [TBL] [Abstract][Full Text] [Related]
15. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. I. Inequality of reflection coefficients for volume flow and solute flow. Friedman MH; Meyer RA Biophys J; 1981 Jun; 34(3):535-44. PubMed ID: 7248473 [TBL] [Abstract][Full Text] [Related]
16. Size effects of pore density and solute size on water osmosis through nanoporous membrane. Zhao K; Wu H J Phys Chem B; 2012 Nov; 116(45):13459-66. PubMed ID: 23116121 [TBL] [Abstract][Full Text] [Related]
17. Equations for membrane transport. Experimental and theoretical tests of the frictional model. Daneshpajooh MH; Mason EA; Bresler EH; Wendt RP Biophys J; 1975 Jun; 15(6):591-613. PubMed ID: 1148361 [TBL] [Abstract][Full Text] [Related]
18. The coupling of solute fluxes in membranes. Galey WR; Van Bruggen JT J Gen Physiol; 1970 Feb; 55(2):220-42. PubMed ID: 5413079 [TBL] [Abstract][Full Text] [Related]
19. Clinical implications of a three-pore model of peritoneal transport. Rippe B; Simonsen O; Stelin G Adv Perit Dial; 1991; 7():3-9. PubMed ID: 1680451 [TBL] [Abstract][Full Text] [Related]
20. General continuum analysis of transport through pores. I. Proof of Onsager's reciprocity postulate for uniform pore. Levitt DG Biophys J; 1975 Jun; 15(6):533-51. PubMed ID: 1148357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]