These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 949525)
21. Coupling of solute and solvent flows in porous lipid bilayer membranes. Andreoli TE; Schafer JA; Troutman SL J Gen Physiol; 1971 Apr; 57(4):479-93. PubMed ID: 5549100 [TBL] [Abstract][Full Text] [Related]
22. [Nonequilibrium thermodynamics model equations of the volume flow through double-membrane system with concentration polarization]. Slezak A Polim Med; 2010; 40(1):15-24. PubMed ID: 20446525 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability. Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596 [TBL] [Abstract][Full Text] [Related]
24. Generalized kinetic analysis of ion-driven cotransport systems: II. Random ligand binding as a simple explanation for non-michaelian kinetics. Sanders D J Membr Biol; 1986; 90(1):67-87. PubMed ID: 2422385 [TBL] [Abstract][Full Text] [Related]
25. Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure. Kargol M; Kargol A Gen Physiol Biophys; 2003 Mar; 22(1):51-68. PubMed ID: 12870701 [TBL] [Abstract][Full Text] [Related]
26. Effect of unstirred layers on binding and reaction kinetics at a membrane surface. Verkman AS; Dix JA Anal Biochem; 1984 Oct; 142(1):109-16. PubMed ID: 6517306 [TBL] [Abstract][Full Text] [Related]
27. Flux ratio theorems for nonlinear membrane transport under nonstationary conditions. Bass L; McNabb A J Theor Biol; 1988 Jul; 133(2):185-91. PubMed ID: 3236892 [TBL] [Abstract][Full Text] [Related]
28. The flux ratio equation under nonstationary conditions. Sten-Knudsen O; Ussing HH J Membr Biol; 1981; 63(3):233-42. PubMed ID: 7310860 [TBL] [Abstract][Full Text] [Related]
29. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Rippe B; Haraldsson B Acta Physiol Scand; 1987 Nov; 131(3):411-28. PubMed ID: 3321914 [TBL] [Abstract][Full Text] [Related]
30. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory. Pellegrino J; Wright S; Ranvill J; Amy G Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965 [TBL] [Abstract][Full Text] [Related]
31. Effect of non-well-mixed compartment and bulk flow on diffusion through a pore. Wang CY Math Biosci; 1989 Jul; 95(1):99-109. PubMed ID: 2520180 [TBL] [Abstract][Full Text] [Related]
32. Polyol permeability of the human red cell. Interpretation of glucose transport in terms of a pore. Bowman RJ; Lwitt DG Biochim Biophys Acta; 1977 Apr; 466(1):68-83. PubMed ID: 856270 [TBL] [Abstract][Full Text] [Related]
33. Convective paracellular solute flux. A source of ion-ion interaction in the epithelial transport equations. Weinstein AM J Gen Physiol; 1987 Mar; 89(3):501-18. PubMed ID: 3559518 [TBL] [Abstract][Full Text] [Related]
34. Net fluid absorption under membrane transport models of peritoneal dialysis. Vonesh EF; Rippe B Blood Purif; 1992; 10(3-4):209-26. PubMed ID: 1308685 [TBL] [Abstract][Full Text] [Related]
35. Osmotic flow equations for leaky porous membranes. Hill AE Proc R Soc Lond B Biol Sci; 1989 Aug; 237(1288):369-77. PubMed ID: 2571158 [TBL] [Abstract][Full Text] [Related]
36. Deficiencies in pore-membrane models of microvascular fluid and solute transudation. Winn R; Nadir B; Gleisner J; Stothert J; Hildebrandt J J Appl Physiol Respir Environ Exerc Physiol; 1981 Dec; 51(6):1574-80. PubMed ID: 7319886 [TBL] [Abstract][Full Text] [Related]
37. The physico-chemical mechanism of mediated transport. II. Osmotic and isosmotic volume flow. Massaldi HA J Theor Biol; 1984 Sep; 110(1):35-57. PubMed ID: 6492825 [TBL] [Abstract][Full Text] [Related]
38. Transport properties of single-file pores with two conformational states. Hernández JA; Fischbarg J Biophys J; 1994 Sep; 67(3):996-1006. PubMed ID: 7811956 [TBL] [Abstract][Full Text] [Related]
39. Permselectivity of the glomerular capillary wall to macromolecules. I. Theoretical considerations. Chang RS; Robertson CR; Deen WM; Brenner BM Biophys J; 1975 Sep; 15(9):861-86. PubMed ID: 1237326 [TBL] [Abstract][Full Text] [Related]
40. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Boschetti-de-Fierro A; Voigt M; Storr M; Krause B Int J Artif Organs; 2013 Jul; 36(7):455-63. PubMed ID: 23661558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]