These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 9495775)
1. Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH. MacCabe AP; Orejas M; Pérez-González JA; Ramón D J Bacteriol; 1998 Mar; 180(5):1331-3. PubMed ID: 9495775 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes. Pérez-Gonzalez JA; De Graaff LH; Visser J; Ramón D Appl Environ Microbiol; 1996 Jun; 62(6):2179-82. PubMed ID: 8787417 [TBL] [Abstract][Full Text] [Related]
3. The wide-domain carbon catabolite repressor CreA indirectly controls expression of the Aspergillus nidulans xlnB gene, encoding the acidic endo-beta-(1,4)-xylanase X(24). Orejas M; MacCabe AP; Pérez-González JA; Kumar S; Ramón D J Bacteriol; 2001 Mar; 183(5):1517-23. PubMed ID: 11160081 [TBL] [Abstract][Full Text] [Related]
4. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Orejas M; Espeso EA; Tilburn J; Sarkar S; Arst HN; Peñalva MA Genes Dev; 1995 Jul; 9(13):1622-32. PubMed ID: 7628696 [TBL] [Abstract][Full Text] [Related]
5. Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a beta-xylosidase. Pérez-González JA; van Peij NN; Bezoen A; MacCabe AP; Ramón D; de Graaff LH Appl Environ Microbiol; 1998 Apr; 64(4):1412-9. PubMed ID: 9546179 [TBL] [Abstract][Full Text] [Related]
6. Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Orejas M; MacCabe AP; Pérez González JA; Kumar S; Ramón D Mol Microbiol; 1999 Jan; 31(1):177-84. PubMed ID: 9987120 [TBL] [Abstract][Full Text] [Related]
7. CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Tamayo EN; Villanueva A; Hasper AA; de Graaff LH; Ramón D; Orejas M Fungal Genet Biol; 2008 Jun; 45(6):984-93. PubMed ID: 18420433 [TBL] [Abstract][Full Text] [Related]
8. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Caracuel Z; Roncero MI; Espeso EA; González-Verdejo CI; García-Maceira FI; Di Pietro A Mol Microbiol; 2003 May; 48(3):765-79. PubMed ID: 12694620 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH Regulatory system in Aspergillus nidulans. Eisendle M; Oberegger H; Buttinger R; Illmer P; Haas H Eukaryot Cell; 2004 Apr; 3(2):561-3. PubMed ID: 15075286 [TBL] [Abstract][Full Text] [Related]
10. Identification, isolation and sequence of the Aspergillus nidulans xlnC gene encoding the 34-kDa xylanase. MacCabe AP; Fernández-Espinar MT; de Graaff LH; Visser J; Ramón D Gene; 1996 Oct; 175(1-2):29-33. PubMed ID: 8917072 [TBL] [Abstract][Full Text] [Related]
11. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. Tilburn J; Sarkar S; Widdick DA; Espeso EA; Orejas M; Mungroo J; Peñalva MA; Arst HN EMBO J; 1995 Feb; 14(4):779-90. PubMed ID: 7882981 [TBL] [Abstract][Full Text] [Related]
12. Characterization and biotechnological application of recombinant xylanases from Aspergillus nidulans. Maitan-Alfenas GP; Oliveira MB; Nagem RA; de Vries RP; Guimarães VM Int J Biol Macromol; 2016 Oct; 91():60-7. PubMed ID: 27235731 [TBL] [Abstract][Full Text] [Related]
13. Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. Espeso EA; Peñalva MA J Biol Chem; 1996 Nov; 271(46):28825-30. PubMed ID: 8910527 [TBL] [Abstract][Full Text] [Related]
14. xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Zadra I; Abt B; Parson W; Haas H Appl Environ Microbiol; 2000 Nov; 66(11):4810-6. PubMed ID: 11055928 [TBL] [Abstract][Full Text] [Related]
15. Depression of the xylanase-encoding cgxA gene of Chaetomium gracile in Aspergillus nidulans. Mimura S; Rao U; Yoshino S; Kato M; Tsukagoshi N Microbiol Res; 1999 Jan; 153(4):369-76. PubMed ID: 10052158 [TBL] [Abstract][Full Text] [Related]
16. Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. Flipphi M; van de Vondervoort PJ; Ruijter GJ; Visser J; Arst HN; Felenbok B J Biol Chem; 2003 Apr; 278(14):11849-57. PubMed ID: 12519784 [TBL] [Abstract][Full Text] [Related]
17. Characterization of AnRP-mediated negative regulation of the xylanase gene, cgxA, from Chaetomium gracile in Aspergillus nidulans. Rao U; Kato M; Kobayashi T; Tsukagoshi N Lett Appl Microbiol; 2003; 36(1):59-63. PubMed ID: 12485344 [TBL] [Abstract][Full Text] [Related]
18. Two family G xylanase genes from Chaetomium gracile and their expression in Aspergillus nidulans. Yoshino S; Oishi M; Moriyama R; Kato M; Tsukagoshi N Curr Genet; 1995 Dec; 29(1):73-80. PubMed ID: 8595661 [TBL] [Abstract][Full Text] [Related]
19. Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Ganga MA; Piñaga F; Vallés S; Ramón D; Querol A Int J Food Microbiol; 1999 Mar; 47(3):171-8. PubMed ID: 10359487 [TBL] [Abstract][Full Text] [Related]