These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 949605)

  • 21. Improved catecholamine histofluorescence in the developing brain based on the magnesium and aluminum (ALFA) perfusion techniques: methodology and anatomical observations.
    Lorén I; Björklund A; Lindvall O; Schmidt RH
    Brain Res Bull; 1982; 9(1-6):11-26. PubMed ID: 6756547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The organization of monoamine-containing neurons in the brain of the sunfish (Lepomis gibbosus) as revealed by fluorescence microscopy.
    Parent A; Dube L; Braford MR; Northcutt RG
    J Comp Neurol; 1978 Dec; 182(3):495-516. PubMed ID: 721968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Response of tyrosine hydroxylase and GTP cyclohydrolase I gene expression to estrogen in brain catecholaminergic regions varies with mode of administration.
    Serova LI; Maharjan S; Huang A; Sun D; Kaley G; Sabban EL
    Brain Res; 2004 Jul; 1015(1-2):1-8. PubMed ID: 15223360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isthmic origin of neurons of the rat substantia nigra.
    Marchand R; Poirier LJ
    Neuroscience; 1983 Jun; 9(2):373-81. PubMed ID: 6877599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maturation of dopaminergic neurons in dissociated cultures of mouse substantia nigra.
    Victorov I; Shaskova N; Kida E; Renkawek K; Mossakowski MJ
    Neuropatol Pol; 1986; 24(1):9-15. PubMed ID: 3748408
    [No Abstract]   [Full Text] [Related]  

  • 26. Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro.
    Volpicelli F; Caiazzo M; Greco D; Consales C; Leone L; Perrone-Capano C; Colucci D'Amato L; di Porzio U
    J Neurochem; 2007 Jul; 102(2):441-53. PubMed ID: 17506860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cryopreservation of human brain tissue.
    Robbins RJ; Torres-Aleman I; Lebranth C; Bradberry CW; Deutch AY; Welsh S; Roth RH; Spencer D; Redmond DE; Naftolin F
    Exp Neurol; 1990 Mar; 107(3):208-13. PubMed ID: 1968397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiated dopaminergic MN9D cells only partially recapitulate the electrophysiological properties of midbrain dopaminergic neurons.
    Rick CE; Ebert A; Virag T; Bohn MC; Surmeier DJ
    Dev Neurosci; 2006; 28(6):528-37. PubMed ID: 17028430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aging and unusual catecholamine-containing structures in the mouse brain.
    Masuoka DT; Jonsson G; Finch CE
    Brain Res; 1979 Jun; 169(2):335-41. PubMed ID: 445161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organization of midbrain catecholamine-containing nuclei and their projections to the striatum in the North American opossum, Didelphis virginiana.
    Hazlett JC; Ho RH; Martin GF
    J Comp Neurol; 1991 Apr; 306(4):585-601. PubMed ID: 1677010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. VIP is a transcriptional target of Nurr1 in dopaminergic cells.
    Luo Y; Henricksen LA; Giuliano RE; Prifti L; Callahan LM; Federoff HJ
    Exp Neurol; 2007 Jan; 203(1):221-32. PubMed ID: 16999955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons.
    Lin L; Rao Y; Isacson O
    Mol Cell Neurosci; 2005 Mar; 28(3):547-55. PubMed ID: 15737744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3.
    Smidt MP; Smits SM; Bouwmeester H; Hamers FP; van der Linden AJ; Hellemons AJ; Graw J; Burbach JP
    Development; 2004 Mar; 131(5):1145-55. PubMed ID: 14973278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developing substantia nigra in human: a qualitative study.
    Sailaja K; Gopinath G
    Dev Neurosci; 1994; 16(1-2):44-52. PubMed ID: 7867516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A null mutation in TGF-alpha leads to a reduction in midbrain dopaminergic neurons in the substantia nigra.
    Blum M
    Nat Neurosci; 1998 Sep; 1(5):374-7. PubMed ID: 10196526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Are large, fluorescent spots in aged mouse brain due to lesioning of catecholamine neurons?
    Masuoka DT
    Brain Res Bull; 1982; 9(1-6):663-6. PubMed ID: 6816392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differentiation of the midbrain dopaminergic pathways during mouse development.
    Hu Z; Cooper M; Crockett DP; Zhou R
    J Comp Neurol; 2004 Aug; 476(3):301-11. PubMed ID: 15269972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of the catecholaminergic neurons in the central nervous system of human embryos and fetuses.
    Verney C
    Microsc Res Tech; 1999 Jul; 46(1):24-47. PubMed ID: 10402270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monoamine distribution in primate brain. I Catecholamine-containing perikarya in the brain stem of Macaca speciosa.
    Garver DL; Sladek JR
    J Comp Neurol; 1975 Feb; 159(3):289-304. PubMed ID: 1112914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of catecholamine and indoleamine neurons in the brain of the common marmoset (Callithrix jacchus).
    Schofield SP; Dixson AF
    J Anat; 1982 Mar; 134(Pt 2):315-38. PubMed ID: 6804424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.