These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9496376)

  • 1. Comparative toxicity of allelochemicals and their enzymatic oxidation products to maize fungal pathogens, emphasizing Fusarium graminearum.
    Dowd PF; Duvick JP; Rood T
    Nat Toxins; 1997; 5(5):180-5. PubMed ID: 9496376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equisetum arvense hydro-alcoholic extract: phenolic composition and antifungal and antimycotoxigenic effect against Aspergillus flavus and Fusarium verticillioides in stored maize.
    Garcia D; Ramos AJ; Sanchis V; Marín S
    J Sci Food Agric; 2013 Jul; 93(9):2248-53. PubMed ID: 23355286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides.
    Wicklow DT; Roth S; Deyrup ST; Gloer JB
    Mycol Res; 2005 May; 109(Pt 5):610-8. PubMed ID: 16018316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.
    Naef A; Zesiger T; Défago G
    J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of selective toxicity: absorption and detoxication of an antibiotic, ascochitine, by sensitive and insensitive fungi.
    Nakanishi T; Oku H
    Phytopathology; 1969 Nov; 59(11):1563-5. PubMed ID: 5393000
    [No Abstract]   [Full Text] [Related]  

  • 6. RNA silencing of mycotoxin production in Aspergillus and Fusarium species.
    McDonald T; Brown D; Keller NP; Hammond TM
    Mol Plant Microbe Interact; 2005 Jun; 18(6):539-45. PubMed ID: 15986923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of polyene antibiotics against phytopathogenic fungi in vitro.
    Egorenkova AN
    Fed Proc Transl Suppl; 1965; 24(5):919-20. PubMed ID: 5214605
    [No Abstract]   [Full Text] [Related]  

  • 8. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity.
    Kumar R; Mishra AK; Dubey NK; Tripathi YB
    Int J Food Microbiol; 2007 Apr; 115(2):159-64. PubMed ID: 17174000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize.
    Wicklow DT; Rogers KD; Dowd PF; Gloer JB
    Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curvicollides A-C: new polyketide-derived lactones from a sclerotium-colonizing isolate of Podospora curvicolla (NRRL 25778).
    Che Y; Gloer JB; Wicklow DT
    Org Lett; 2004 Apr; 6(8):1249-52. PubMed ID: 15070309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Fusarium graminearum growth and development by farnesol.
    Semighini CP; Murray N; Harris SD
    FEMS Microbiol Lett; 2008 Feb; 279(2):259-64. PubMed ID: 18201191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heliconols A-C: antimicrobial hemiketals from the freshwater aquatic fungus Helicodendron giganteum.
    Mudur SV; Swenson DC; Gloer JB; Campbell J; Shearer CA
    Org Lett; 2006 Jul; 8(15):3191-4. PubMed ID: 16836363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal susceptibility for common pathogens of fungal keratitis in Shandong Province, China.
    Xie L; Zhai H; Zhao J; Sun S; Shi W; Dong X
    Am J Ophthalmol; 2008 Aug; 146(2):260-265. PubMed ID: 18547535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity relationships delineate how the maize pathogen Cochliobolus heterostrophus uses aromatic compounds as signals and metabolites.
    Shalaby S; Horwitz BA; Larkov O
    Mol Plant Microbe Interact; 2012 Jul; 25(7):931-40. PubMed ID: 22452657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe).
    Santiago R; Reid LM; Arnason JT; Zhu X; Martinez N; Malvar RA
    J Agric Food Chem; 2007 Jun; 55(13):5186-93. PubMed ID: 17547419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize.
    Wicklow DT; Poling SM
    Phytopathology; 2009 Jan; 99(1):109-15. PubMed ID: 19055442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens.
    Patiño B; Vázquez C; Manning JM; Roncero MIG; Córdoba-Cañero D; Di Pietro A; Martínez-Del-Pozo Á
    Int J Food Microbiol; 2018 Oct; 283():45-51. PubMed ID: 30099994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting antioxidative signal transduction and stress response system: control of pathogenic Aspergillus with phenolics that inhibit mitochondrial function.
    Kim JH; Campbell BC; Mahoney N; Chan KL; May GS
    J Appl Microbiol; 2006 Jul; 101(1):181-9. PubMed ID: 16834605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels.
    Bakan B; Bily AC; Melcion D; Cahagnier B; Regnault-Roger C; Philogène BJ; Richard-Molard D
    J Agric Food Chem; 2003 Apr; 51(9):2826-31. PubMed ID: 12696980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal activity stability of flaxseed protein extract using response surface methodology.
    Xu Y; Hall C; Wolf-Hall C
    J Food Sci; 2008 Jan; 73(1):M9-14. PubMed ID: 18211360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.