BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9496472)

  • 1. Role of the pons in hypoxic respiratory depression in the neonatal rat.
    Okada Y; Kawai A; Mückenhoff K; Scheid P
    Respir Physiol; 1998 Jan; 111(1):55-63. PubMed ID: 9496472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theophylline and hypoxic ventilatory response in the rat isolated brainstem-spinal cord.
    Kawai A; Okada Y; Mückenhoff K; Scheid P
    Respir Physiol; 1995 Apr; 100(1):25-32. PubMed ID: 7604181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diencephalic and mesencephalic influences on ponto-medullary respiratory control in normoxic and hypoxic conditions: an in vitro study on central nervous system preparations from newborn rat.
    Voituron N; Frugière A; Gros F; Macron JM; Bodineau L
    Neuroscience; 2005; 132(3):843-54. PubMed ID: 15837144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory mechanisms in hypoxic respiratory depression studied in an in vitro preparation.
    Kato T; Hayashi F; Tatsumi K; Kuriyama T; Fukuda Y
    Neurosci Res; 2000 Nov; 38(3):281-8. PubMed ID: 11070195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of respiratory rhythm by 5-HT in the brainstem-spinal cord preparation from newborn rat.
    Onimaru H; Shamoto A; Homma I
    Pflugers Arch; 1998 Mar; 435(4):485-94. PubMed ID: 9446695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of hypoxia-induced ventilatory depression in newborn piglets.
    St-Jacques R; Filiano JJ; Darnall RA; St-John WM
    Exp Physiol; 2003 Jul; 88(4):509-15. PubMed ID: 12861338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fos study of ponto-medullary areas involved in the in vitro hypoxic respiratory depression.
    Bodineau L; Cayetanot F; Frugière A
    Neuroreport; 2001 Dec; 12(18):3913-6. PubMed ID: 11742210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of volatile anesthetics on respiratory activity and chemosensitivity in the isolated brainstem-spinal cord of the newborn rat.
    Otsuka H
    Hokkaido Igaku Zasshi; 1998 Mar; 73(2):117-36. PubMed ID: 9612706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in electrical activity of the cerebral cortex and of some subcortical centers in hyperbaric oxygen.
    Rucci FS; Giretti ML; La Rocca M
    Electroencephalogr Clin Neurophysiol; 1967 Mar; 22(3):231-8. PubMed ID: 4163821
    [No Abstract]   [Full Text] [Related]  

  • 10. Respiratory activity of the neonatal dorsolateral pons in vitro.
    Arata A
    Respir Physiol Neurobiol; 2009 Aug; 168(1-2):144-52. PubMed ID: 19616645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascending projection from the respiratory centre to mesencephalon and diencephalon.
    Vibert JF; Caille D; Bertrand F; Gromysz H; Hugelin A
    Neurosci Lett; 1979 Jan; 11(1):29-33. PubMed ID: 431882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory responses to brain stem stimulation.
    Bergmann F; Leibowitz U; Korczyn AD
    J Neurol Sci; 1966; 3(3):217-28. PubMed ID: 5937063
    [No Abstract]   [Full Text] [Related]  

  • 13. Connections of cerebral structures functioning in neurohypophysial hormone release.
    Woods WH; Holland RC; Powell EW
    Brain Res; 1969 Jan; 12(1):26-46. PubMed ID: 4895792
    [No Abstract]   [Full Text] [Related]  

  • 14. Central origin of the hypoxic depression of breathing in the newborn.
    Martin-Body RL; Johnston BM
    Respir Physiol; 1988 Jan; 71(1):25-32. PubMed ID: 3340812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of in utero caffeine exposure on respiratory output in normoxic and hypoxic conditions and related changes of Fos expression: a study on brainstem-spinal cord preparations isolated from newborn rats.
    Bodineau L; Cayetanot F; Sådani-Makki F; Bach V; Gros F; Lebleu A; Collin T; Frugière A
    Pediatr Res; 2003 Feb; 53(2):266-73. PubMed ID: 12538785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurones in the ventrolateral pons are required for post-hypoxic frequency decline in rats.
    Coles SK; Dick TE
    J Physiol; 1996 Nov; 497 ( Pt 1)(Pt 1):79-94. PubMed ID: 8951713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizations of eupnea, apneusis and gasping in a perfused rat preparation.
    St-John WM; Paton JF
    Respir Physiol; 2000 Nov; 123(3):201-13. PubMed ID: 11007987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature, age and the pons on respiratory rhythm in the rat brainstem-spinal cord.
    Zimmer MB; Fong AY; Milsom WK
    Respir Physiol Neurobiol; 2020 Feb; 273():103333. PubMed ID: 31634578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental plasticity of the hypoxic ventilatory response in rats induced by neonatal hypoxia.
    Bavis RW; Olson EB; Vidruk EH; Fuller DD; Mitchell GS
    J Physiol; 2004 Jun; 557(Pt 2):645-60. PubMed ID: 15020695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of rostral medulla in serotonin-induced changes of respiratory rhythm in newborn rat brainstem-spinal cord preparations.
    Makino M; Saiki C; Ide R; Matsumoto S
    Neurosci Lett; 2014 Jan; 559():127-31. PubMed ID: 24325887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.