These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9496472)

  • 21. Developmental hyperoxia alters CNS mechanisms underlying hypoxic ventilatory depression in neonatal rats.
    Hill CB; Grandgeorge SH; Bavis RW
    Respir Physiol Neurobiol; 2013 Dec; 189(3):498-505. PubMed ID: 23994825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-dependent chemosensitive pontine inhibition of medullary respiratory rhythm generation in the isolated brainstem of the neonatal rat.
    Ito Y; Oyamada Y; Yamaguchi K
    Brain Res; 2000 Dec; 887(2):418-20. PubMed ID: 11134633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Subcortical electric activity of the rat during hyperbaric oxygenation].
    Rucci FS; Giretti ML; La Rocca M
    Boll Soc Ital Biol Sper; 1967 Jan; 43(2):110-2. PubMed ID: 6058138
    [No Abstract]   [Full Text] [Related]  

  • 24. Microenvironment of respiratory neurons in the in vitro brainstem-spinal cord of neonatal rats.
    Brockhaus J; Ballanyi K; Smith JC; Richter DW
    J Physiol; 1993 Mar; 462():421-45. PubMed ID: 8331589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental changes in the hypoxia tolerance of the in vitro respiratory network of rats.
    Ballanyi K; Kuwana S; Völker A; Morawietz G; Richter DW
    Neurosci Lett; 1992 Dec; 148(1-2):141-4. PubMed ID: 1300487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orexin-B antagonized respiratory depression induced by sevoflurane, propofol, and remifentanil in isolated brainstem-spinal cords of neonatal rats.
    Umezawa N; Arisaka H; Sakuraba S; Sugita T; Matsumoto A; Kaku Y; Yoshida K; Kuwana S
    Respir Physiol Neurobiol; 2015 Jan; 205():61-5. PubMed ID: 25448395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Respiratory responses to pH in the absence of pontine and dorsal medullary areas in the newborn mouse in vitro.
    Infante CD; von Bernhardi R; Rovegno M; Llona I; Eugenín JL
    Brain Res; 2003 Sep; 984(1-2):198-205. PubMed ID: 12932854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ventrolateral lesions at the ponto-medullary junction and the effects of noradrenaline on respiratory rhythm in rat brainstem-spinal cord preparations.
    Ito Y; Saiki C; Makino M; Matsumoto S
    Life Sci; 2009 Aug; 85(7-8):322-6. PubMed ID: 19567253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity.
    Smith JC; Greer JJ; Liu GS; Feldman JL
    J Neurophysiol; 1990 Oct; 64(4):1149-69. PubMed ID: 2258739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ventrolateral pons mediates short-term depression of respiratory frequency after brief hypoxia.
    Dick TE; Coles SK
    Respir Physiol; 2000 Jul; 121(2-3):87-100. PubMed ID: 10963767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pontine cholinergic respiratory depression in neonatal and young rats.
    Fung ML; St John WM
    Life Sci; 1998; 62(24):2249-56. PubMed ID: 9627084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The kreisler mutation leads to the loss of intrinsically hypoxia-activated spots in the region of the retrotrapezoid nucleus/parafacial respiratory group.
    Voituron N; Frugière A; Mc Kay LC; Romero-Granados R; Domínguez-Del-Toro E; Saadani-Makki F; Champagnat J; Bodineau L
    Neuroscience; 2011 Oct; 194():95-111. PubMed ID: 21839147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Permanent release of noradrenaline modulates respiratory frequency in the newborn rat: an in vitro study.
    Errchidi S; Hilaire G; Monteau R
    J Physiol; 1990 Oct; 429():497-510. PubMed ID: 2277355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fastigial efferent projections in the monkey: an autoradiographic study.
    Batton RR; Jayaraman A; Ruggiero D; Carpenter MB
    J Comp Neurol; 1977 Jul; 174(2):281-305. PubMed ID: 68041
    [No Abstract]   [Full Text] [Related]  

  • 35. Unit activity in brain stem reticular formation of the rat during learning.
    Kornblith C; Olds J
    J Neurophysiol; 1973 May; 36(3):489-501. PubMed ID: 4698321
    [No Abstract]   [Full Text] [Related]  

  • 36. Brain-stem regions for stimulus-bound and stimulus-related respiration.
    Tan ES
    Exp Neurol; 1967 Apr; 17(4):517-28. PubMed ID: 6020665
    [No Abstract]   [Full Text] [Related]  

  • 37. The hypoxic response of neurones within the in vitro mammalian respiratory network.
    Ramirez JM; Quellmalz UJ; Wilken B; Richter DW
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):571-82. PubMed ID: 9518714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenosine modulates inspiratory neurons and the respiratory pattern in the brainstem of neonatal rats.
    Herlenius E; Lagercrantz H; Yamamoto Y
    Pediatr Res; 1997 Jul; 42(1):46-53. PubMed ID: 9212036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Central eye nystagmus in the pontomesencephalic preparation.
    Manni E; Giretti ML
    Exp Neurol; 1970 Feb; 26(2):342-53. PubMed ID: 5414373
    [No Abstract]   [Full Text] [Related]  

  • 40. Whole-cell patch-clamp recordings from respiratory neurons in neonatal rat brainstem in vitro.
    Smith JC; Ballanyi K; Richter DW
    Neurosci Lett; 1992 Jan; 134(2):153-6. PubMed ID: 1589140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.