BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 9496907)

  • 41. Prognostic significance of activated Akt expression in pancreatic ductal adenocarcinoma.
    Yamamoto S; Tomita Y; Hoshida Y; Morooka T; Nagano H; Dono K; Umeshita K; Sakon M; Ishikawa O; Ohigashi H; Nakamori S; Monden M; Aozasa K
    Clin Cancer Res; 2004 Apr; 10(8):2846-50. PubMed ID: 15102693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Translocation and activation of AKT2 in response to stimulation by insulin.
    Mitsuuchi Y; Johnson SW; Moonblatt S; Testa JR
    J Cell Biochem; 1998 Sep; 70(4):433-41. PubMed ID: 9712142
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas.
    Goggins M; Shekher M; Turnacioglu K; Yeo CJ; Hruban RH; Kern SE
    Cancer Res; 1998 Dec; 58(23):5329-32. PubMed ID: 9850059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclin D1 (PRAD1) protein expression in breast cancer: approximately one-third of infiltrating mammary carcinomas show overexpression of the cyclin D1 oncogene.
    Zukerberg LR; Yang WI; Gadd M; Thor AD; Koerner FC; Schmidt EV; Arnold A
    Mod Pathol; 1995 Jun; 8(5):560-7. PubMed ID: 7675778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Incidence of homogeneously staining regions in non-Hodgkin lymphomas.
    Arranz E; Robledo M; Martínez B; Gallego J; Román A; Rivas C; Benítez J
    Cancer Genet Cytogenet; 1996 Mar; 87(1):1-3. PubMed ID: 8646732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene.
    Altomare DA; Guo K; Cheng JQ; Sonoda G; Walsh K; Testa JR
    Oncogene; 1995 Sep; 11(6):1055-60. PubMed ID: 7566964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma.
    Staal SP
    Proc Natl Acad Sci U S A; 1987 Jul; 84(14):5034-7. PubMed ID: 3037531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amplification of 19q13.1-q13.2 sequences in ovarian cancer. G-band, FISH, and molecular studies.
    Thompson FH; Nelson MA; Trent JM; Guan XY; Liu Y; Yang JM; Emerson J; Adair L; Wymer J; Balfour C; Massey K; Weinstein R; Alberts DS; Taetle R
    Cancer Genet Cytogenet; 1996 Mar; 87(1):55-62. PubMed ID: 8646743
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromosome mapping of the mouse Akt2 gene and Akt2 pseudogene.
    Altomare DA; Kozak CA; Sonoda G; Testa JR
    Cytogenet Cell Genet; 1996; 74(4):248-51. PubMed ID: 8976376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antisense and dominant-negative AKT2 cDNA inhibits glioma cell invasion.
    Pu P; Kang C; Li J; Jiang H
    Tumour Biol; 2004; 25(4):172-8. PubMed ID: 15557754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression of c-erbB-2 in human pancreatic adenocarcinomas.
    Williams TM; Weiner DB; Greene MI; Maguire HC
    Pathobiology; 1991; 59(1):46-52. PubMed ID: 1675057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oncogenic transformation induced by membrane-targeted Akt2 and Akt3.
    Mende I; Malstrom S; Tsichlis PN; Vogt PK; Aoki M
    Oncogene; 2001 Jul; 20(32):4419-23. PubMed ID: 11466625
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mxi1 tumor suppressor gene is not mutated in primary pancreatic adenocarcinoma.
    Bartsch D; Peiffer SL; Kaleem Z; Wells SA; Goodfellow PJ
    Cancer Lett; 1996 Apr; 102(1-2):73-6. PubMed ID: 8603382
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification.
    Chen S; Auletta T; Dovirak O; Hutter C; Kuntz K; El-ftesi S; Kendall J; Han H; Von Hoff DD; Ashfaq R; Maitra A; Iacobuzio-Donahue CA; Hruban RH; Lucito R
    Cancer Biol Ther; 2008 Nov; 7(11):1793-802. PubMed ID: 18836286
    [TBL] [Abstract][Full Text] [Related]  

  • 55. STK38L kinase ablation promotes loss of cell viability in a subset of KRAS-dependent pancreatic cancer cell lines.
    Grant TJ; Mehta AK; Gupta A; Sharif AAD; Arora KS; Deshpande V; Ting DT; Bardeesy N; Ganem NJ; Hergovich A; Singh A
    Oncotarget; 2017 Oct; 8(45):78556-78572. PubMed ID: 29108249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Triangle of AKT2, miRNA, and Tumorigenesis in Different Cancers.
    Honardoost M; Rad SMAH
    Appl Biochem Biotechnol; 2018 Jun; 185(2):524-540. PubMed ID: 29199386
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vav1 Down-Modulates Akt2 Expression in Cells from Pancreatic Ductal Adenocarcinoma: Nuclear Vav1 as a Potential Regulator of Akt Related Malignancy in Pancreatic Cancer.
    Grassilli S; Brugnoli F; Lattanzio R; Buglioni S; Bertagnolo V
    Biomedicines; 2020 Sep; 8(10):. PubMed ID: 32993067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A 2D-QSAR and Grid-Independent Molecular Descriptor (GRIND) Analysis of Quinoline-Type Inhibitors of Akt2: Exploration of the Binding Mode in the Pleckstrin Homology (PH) Domain.
    Akhtar N; Jabeen I
    PLoS One; 2016; 11(12):e0168806. PubMed ID: 28036396
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SMURF1 amplification promotes invasiveness in pancreatic cancer.
    Kwei KA; Shain AH; Bair R; Montgomery K; Karikari CA; van de Rijn M; Hidalgo M; Maitra A; Bashyam MD; Pollack JR
    PLoS One; 2011; 6(8):e23924. PubMed ID: 21887346
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Visualization of c-Ki-ras-2 oncogene sequences in human pancreas, a chemically induced transplantable carcinoma, and carcinomas of pancreas by in situ hybridization.
    Parsa I; Cleary CM; Marsh WH; Butt KM; Foye CA
    Int J Pancreatol; 1986 Dec; 1(5-6):299-308. PubMed ID: 3681029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.