BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 9497256)

  • 1. Genetic Factors Underlying Sudden Infant Death Syndrome.
    Keywan C; Poduri AH; Goldstein RD; Holm IA
    Appl Clin Genet; 2021; 14():61-76. PubMed ID: 33623412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research Advances on Therapeutic Approaches to Congenital Central Hypoventilation Syndrome (CCHS).
    Di Lascio S; Benfante R; Cardani S; Fornasari D
    Front Neurosci; 2020; 14():615666. PubMed ID: 33510615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes.
    Drilon A; Hu ZI; Lai GGY; Tan DSW
    Nat Rev Clin Oncol; 2018 Mar; 15(3):151-167. PubMed ID: 29134959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Congenital central hypoventilation syndrome: a bedside-to-bench success story for advancing early diagnosis and treatment and improved survival and quality of life.
    Weese-Mayer DE; Rand CM; Zhou A; Carroll MS; Hunt CE
    Pediatr Res; 2017 Jan; 81(1-2):192-201. PubMed ID: 27673423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population.
    Liebrechts-Akkerman G; Liu F; Lao O; Ooms AH; van Duijn K; Vermeulen M; Jaddoe VW; Hofman A; Engelberts AC; Kayser M
    Int J Legal Med; 2014 Jul; 128(4):621-9. PubMed ID: 24442913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations.
    Chatterjee R; Ramos E; Hoffman M; VanWinkle J; Martin DR; Davis TK; Hoshi M; Hmiel SP; Beck A; Hruska K; Coplen D; Liapis H; Mitra R; Druley T; Austin P; Jain S
    Hum Genet; 2012 Nov; 131(11):1725-38. PubMed ID: 22729463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A candidate gene study of obstructive sleep apnea in European Americans and African Americans.
    Larkin EK; Patel SR; Goodloe RJ; Li Y; Zhu X; Gray-McGuire C; Adams MD; Redline S
    Am J Respir Crit Care Med; 2010 Oct; 182(7):947-53. PubMed ID: 20538960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinase mutations in human disease: interpreting genotype-phenotype relationships.
    Lahiry P; Torkamani A; Schork NJ; Hegele RA
    Nat Rev Genet; 2010 Jan; 11(1):60-74. PubMed ID: 20019687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations of the RET gene in isolated and syndromic Hirschsprung's disease in human disclose major and modifier alleles at a single locus.
    de Pontual L; Pelet A; Trochet D; Jaubert F; Espinosa-Parrilla Y; Munnich A; Brunet JF; Goridis C; Feingold J; Lyonnet S; Amiel J
    J Med Genet; 2006 May; 43(5):419-23. PubMed ID: 16443855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Congenital hypoventilation and impaired hypoxic response in Nurr1 mutant mice.
    Nsegbe E; Wallén-Mackenzie A; Dauger S; Roux JC; Shvarev Y; Lagercrantz H; Perlmann T; Herlenius E
    J Physiol; 2004 Apr; 556(Pt 1):43-59. PubMed ID: 14742729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of congenital central hypoventilation syndrome.
    Sasaki A; Kanai M; Kijima K; Akaba K; Hashimoto M; Hasegawa H; Otaki S; Koizumi T; Kusuda S; Ogawa Y; Tuchiya K; Yamamoto W; Nakamura T; Hayasaka K
    Hum Genet; 2003 Dec; 114(1):22-6. PubMed ID: 14566559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hirschsprung disease, associated syndromes, and genetics: a review.
    Amiel J; Lyonnet S
    J Med Genet; 2001 Nov; 38(11):729-39. PubMed ID: 11694544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo.
    Erickson JT; Brosenitsch TA; Katz DM
    J Neurosci; 2001 Jan; 21(2):581-9. PubMed ID: 11160437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sympathoadrenal hyperplasia causes renal malformations in Ret(MEN2B)-transgenic mice.
    Gestblom C; Sweetser DA; Doggett B; Kapur RP
    Am J Pathol; 1999 Dec; 155(6):2167-79. PubMed ID: 10595945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations of the RET-GDNF signaling pathway in Ondine's curse.
    Amiel J; Salomon R; Attié T; Pelet A; Trang H; Mokhtari M; Gaultier C; Munnich A; Lyonnet S
    Am J Hum Genet; 1998 Mar; 62(3):715-7. PubMed ID: 9497256
    [No Abstract]   [Full Text] [Related]  

  • 16. The GDNF-RET signalling partnership.
    Robertson K; Mason I
    Trends Genet; 1997 Jan; 13(1):1-3. PubMed ID: 9009838
    [No Abstract]   [Full Text] [Related]  

  • 17. Expression of RET and its ligand complexes, GDNF/GFRalpha-1 and NTN/GFRalpha-2, in medullary thyroid carcinomas.
    Frisk T; Farnebo F; Zedenius J; Grimelius L; Höög A; Wallin G; Larsson C
    Eur J Endocrinol; 2000 Jun; 142(6):643-9. PubMed ID: 10822229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glial cell line-derived neurotrophic factor differentially stimulates ret mutants associated with the multiple endocrine neoplasia type 2 syndromes and Hirschsprung's disease.
    Carlomagno F; Melillo RM; Visconti R; Salvatore G; De Vita G; Lupoli G; Yu Y; Jing S; Vecchio G; Fusco A; Santoro M
    Endocrinology; 1998 Aug; 139(8):3613-9. PubMed ID: 9681515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a ligand-specific signaling through GFRalpha-1, but not GFRalpha-2, in the absence of Ret.
    Pezeshki G; Franke B; Engele J
    J Neurosci Res; 2001 Nov; 66(3):390-5. PubMed ID: 11746356
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.