These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 9497378)
1. How replacements of the 12 conserved histidines of subunit I affect assembly, cofactor binding, and enzymatic activity of the Bradyrhizobium japonicum cbb3-type oxidase. Zufferey R; Arslan E; Thöny-Meyer L; Hennecke H J Biol Chem; 1998 Mar; 273(11):6452-9. PubMed ID: 9497378 [TBL] [Abstract][Full Text] [Related]
2. Histidine 131, not histidine 43, of the Bradyrhizobium japonicum FixN protein is exposed towards the periplasm and essential for the function of the cbb3-type cytochrome oxidase. Zufferey R; Thöny-Meyer L; Hennecke H FEBS Lett; 1996 Oct; 394(3):349-52. PubMed ID: 8830672 [TBL] [Abstract][Full Text] [Related]
3. Two conserved non-canonical histidines are essential for activity of the cbb (3)-type oxidase in Rhodobacter capsulatus: non-canonical histidines are essential for cbb (3)-type oxidase activity in R. capsulatus. Oztürk M; Mandaci S Mol Biol Rep; 2007 Sep; 34(3):165-72. PubMed ID: 17143652 [TBL] [Abstract][Full Text] [Related]
4. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. Preisig O; Zufferey R; Thöny-Meyer L; Appleby CA; Hennecke H J Bacteriol; 1996 Mar; 178(6):1532-8. PubMed ID: 8626278 [TBL] [Abstract][Full Text] [Related]
5. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Preisig O; Anthamatten D; Hennecke H Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3309-13. PubMed ID: 8386371 [TBL] [Abstract][Full Text] [Related]
6. Identification of heme and copper ligands in subunit I of the cytochrome bo complex in Escherichia coli. Minagawa J; Mogi T; Gennis RB; Anraku Y J Biol Chem; 1992 Jan; 267(3):2096-104. PubMed ID: 1309808 [TBL] [Abstract][Full Text] [Related]
7. Assembly and function of the cytochrome cbb3 oxidase subunits in Bradyrhizobium japonicum. Zufferey R; Preisig O; Hennecke H; Thöny-Meyer L J Biol Chem; 1996 Apr; 271(15):9114-9. PubMed ID: 8621562 [TBL] [Abstract][Full Text] [Related]
8. Effect of mutations of five conserved histidine residues in the catalytic subunit of the cbb3 cytochrome c oxidase on its function. Oh JI J Microbiol; 2006 Jun; 44(3):284-92. PubMed ID: 16820758 [TBL] [Abstract][Full Text] [Related]
9. Identity of the axial ligand of the high-spin heme in cytochrome oxidase: spectroscopic characterization of mutants in the bo-type oxidase of Escherichia coli and the aa3-type oxidase of Rhodobacter sphaeroides. Calhoun MW; Thomas JW; Hill JJ; Hosler JP; Shapleigh JP; Tecklenburg MM; Ferguson-Miller S; Babcock GT; Alben JO; Gennis RB Biochemistry; 1993 Oct; 32(40):10905-11. PubMed ID: 8399240 [TBL] [Abstract][Full Text] [Related]
10. The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb3-type cytochrome oxidase. Preisig O; Zufferey R; Hennecke H Arch Microbiol; 1996 May; 165(5):297-305. PubMed ID: 8661920 [TBL] [Abstract][Full Text] [Related]
11. The cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase. Toledo-Cuevas M; Barquera B; Gennis RB; Wikström M; García-Horsman JA Biochim Biophys Acta; 1998 Jul; 1365(3):421-34. PubMed ID: 9711295 [TBL] [Abstract][Full Text] [Related]
12. Determination of the ligands of the low spin heme of the cytochrome o ubiquinol oxidase complex using site-directed mutagenesis. Lemieux LJ; Calhoun MW; Thomas JW; Ingledew WJ; Gennis RB J Biol Chem; 1992 Jan; 267(3):2105-13. PubMed ID: 1309809 [TBL] [Abstract][Full Text] [Related]
13. Heme C incorporation into the c-type cytochromes FixO and FixP is essential for assembly of the Bradyrhizobium japonicum cbb3-type oxidase. Zufferey R; Hennecke H; Thöny-Meyer L FEBS Lett; 1997 Jul; 412(1):75-8. PubMed ID: 9257693 [TBL] [Abstract][Full Text] [Related]
14. Substitutions of conserved aromatic amino acid residues in subunit I perturb the metal centers of the Escherichia coli bo-type ubiquinol oxidase. Mogi T; Minagawa J; Hirano T; Sato-Watanabe M; Tsubaki M; Uno T; Hori H; Nakamura H; Nishimura Y; Anraku Y Biochemistry; 1998 Feb; 37(6):1632-9. PubMed ID: 9484234 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutants of the cytochrome bo ubiquinol oxidase of Escherichia coli: amino acid substitutions for two histidines that are putative CuB ligands. Calhoun MW; Hill JJ; Lemieux LJ; Ingledew WJ; Alben JO; Gennis RB Biochemistry; 1993 Nov; 32(43):11524-9. PubMed ID: 8218219 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic characterization of mutants supports the assignment of histidine-419 as the axial ligand of heme o in the binuclear center of the cytochrome bo ubiquinol oxidase from Escherichia coli. Calhoun MW; Lemieux LJ; Thomas JW; Hill JJ; Goswitz VC; Alben JO; Gennis RB Biochemistry; 1993 Dec; 32(48):13254-61. PubMed ID: 8241181 [TBL] [Abstract][Full Text] [Related]
18. Site-directed mutagenesis of five conserved residues of subunit i of the cytochrome cbb3 oxidase in Rhodobacter capsulatus. Ozturk M; Gurel E; Watmough NJ; Mandaci S J Biochem Mol Biol; 2007 Sep; 40(5):697-707. PubMed ID: 17927903 [TBL] [Abstract][Full Text] [Related]
19. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus. Thöny-Meyer L; Beck C; Preisig O; Hennecke H Mol Microbiol; 1994 Nov; 14(4):705-16. PubMed ID: 7891558 [TBL] [Abstract][Full Text] [Related]
20. Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum. Bühler D; Rossmann R; Landolt S; Balsiger S; Fischer HM; Hennecke H J Biol Chem; 2010 May; 285(21):15704-13. PubMed ID: 20335176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]