BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9497817)

  • 1. Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendons.
    Tsuchida T; Yasuda K; Kaneda K; Hayashi K; Yamamoto N; Miyakawa K; Tanaka K
    J Orthop Res; 1997 Nov; 15(6):904-10. PubMed ID: 9497817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model.
    Majima T; Yasuda K; Tsuchida T; Tanaka K; Miyakawa K; Minami A; Hayashi K
    J Orthop Sci; 2003; 8(6):836-41. PubMed ID: 14648274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of complete stress-shielding on the mechanical properties and histology of in situ frozen patellar tendon.
    Ohno K; Yasuda K; Yamamoto N; Kaneda K; Hayashi K
    J Orthop Res; 1993 Jul; 11(4):592-602. PubMed ID: 8340831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of collagen fascicles from in situ frozen and stress-shielded rabbit patellar tendons.
    Yamamoto E; Tokura S; Yamamoto N; Hayashi K
    Clin Biomech (Bristol, Avon); 2000 May; 15(4):284-91. PubMed ID: 10675670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical effects of stress shielding of the rabbit patellar tendon depend on the degree of stress reduction.
    Majima T; Yasuda K; Fujii T; Yamamoto N; Hayashi K; Kaneda K
    J Orthop Res; 1996 May; 14(3):377-83. PubMed ID: 8676249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local administration of interleukin-1 receptor antagonist inhibits deterioration of mechanical properties of the stress-shielded patellar tendon.
    Miyatake S; Tohyama H; Kondo E; Katsura T; Onodera S; Yasuda K
    J Biomech; 2008; 41(4):884-9. PubMed ID: 18062978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon.
    Uchida H; Tohyama H; Nagashima K; Ohba Y; Matsumoto H; Toyama Y; Yasuda K
    J Biomech; 2005 Apr; 38(4):791-8. PubMed ID: 15713300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of stress shielding on the mechanical properties of rabbit patellar tendon.
    Yamamoto N; Ohno K; Hayashi K; Kuriyama H; Yasuda K; Kaneda K
    J Biomech Eng; 1993 Feb; 115(1):23-8. PubMed ID: 8445894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of age on collagen fibril diameter in rabbit patellar tendon repair.
    Sklenka AM; Levy MS; Boivin GP
    Comp Med; 2006 Feb; 56(1):8-11. PubMed ID: 16521853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural changes of the patellar tendon as a cruciate ligament substitute (one year and two year results).
    Decker B; Bosch U; Kasperczyk W; Oestern HJ; Reale E
    J Submicrosc Cytol Pathol; 1991 Jan; 23(1):9-21. PubMed ID: 2036629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deterioration of mechanical properties of the autograft in controlled stress-shielded augmentation procedures. An experimental study with rabbit patellar tendon.
    Majima T; Yasuda K; Yamamoto N; Kaneda K; Hayashi K
    Am J Sports Med; 1994; 22(6):821-9. PubMed ID: 7856807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A potential mechanism for age-related declines in patellar tendon biomechanics.
    Dressler MR; Butler DL; Wenstrup R; Awad HA; Smith F; Boivin GP
    J Orthop Res; 2002 Nov; 20(6):1315-22. PubMed ID: 12472246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete stress shielding of the Achilles tendon: ultrastructure and level of interleukin-1 and TGF-β.
    Wang W; Tang X; Zhang J; Yan X; Ma Y
    Orthopedics; 2010 Nov; 33(11):810. PubMed ID: 21053877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-strain characteristics of in situ frozen and stress-shielded rabbit patellar tendon.
    Tohyama H; Ohno K; Yamamoto N; Hayashi K; Yasuda K; Kaneda K
    Clin Biomech (Bristol, Avon); 1992 Nov; 7(4):226-30. PubMed ID: 23915787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons.
    Lavagnino M; Arnoczky SP; Frank K; Tian T
    J Biomech; 2005 Jan; 38(1):69-75. PubMed ID: 15519341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth-related changes in the mechanical properties of collagen fascicles from rabbit patellar tendons.
    Yamamoto E; Iwanaga W; Yamamoto N; Hayashi K
    Biorheology; 2004; 41(1):1-11. PubMed ID: 14967886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation of diameter distribution, number density, and area fraction of fibrils within five areas of the rabbit patellar tendon.
    Williams LN; Elder SH; Horstemeyer MF; Harbarger D
    Ann Anat; 2008 Nov; 190(5):442-51. PubMed ID: 18710799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of restressing on the mechanical properties of stress-shielded patellar tendons in rabbits.
    Yamamoto N; Hayashi K; Kuriyama H; Ohno K; Yasuda K; Kaneda K
    J Biomech Eng; 1996 May; 118(2):216-20. PubMed ID: 8738787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of in situ freezing on rabbit patellar tendon. A histologic, biochemical, and biomechanical analysis.
    Graf BK; Fujisaki K; Vanderby R; Vailas AC
    Am J Sports Med; 1992; 20(4):401-5. PubMed ID: 1415881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.