These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 9498573)
21. Blocking of negative charged carboxyl groups converts Naja atra neurotoxin to cardiotoxin-like protein. Shi YJ; Chiou JT; Wang LJ; Huang CH; Lee YC; Chen YJ; Chang LS Int J Biol Macromol; 2020 Dec; 164():2953-2963. PubMed ID: 32846183 [TBL] [Abstract][Full Text] [Related]
22. Analysis of a conformation-independent epitope and a conformational epitope in a protein: a study on cobrotoxin from Taiwan cobra venom. Chang LS; Kuo KW; Lin J; Lin SR; Chang CC J Biochem; 1995 Apr; 117(4):863-8. PubMed ID: 7592551 [TBL] [Abstract][Full Text] [Related]
23. Isolation and pharmacological characterization of α-Elapitoxin-Na1a, a novel short-chain postsynaptic neurotoxin from the venom of the Chinese Cobra (Naja atra). Liang Q; Huynh TM; Isbister GK; Hodgson WC Biochem Pharmacol; 2020 Nov; 181():114059. PubMed ID: 32473162 [TBL] [Abstract][Full Text] [Related]
24. Structure-function relationship of three neurotoxins from the venom of Naja kaouthia: a comparison between the NMR-derived structure of NT2 with its homologues, NT1 and NT3. Cheng Y; Meng Q; Wang W; Wang J Biochim Biophys Acta; 2002 Feb; 1594(2):353-63. PubMed ID: 11904231 [TBL] [Abstract][Full Text] [Related]
25. Unfolding/folding studies on cobrotoxin from Taiwan cobra venom: pH and GSH/GSSG govern disulfide isomerization at the C-terminus. Chang LS; Lin SR; Chang CC Arch Biochem Biophys; 1998 Jun; 354(1):1-8. PubMed ID: 9633591 [TBL] [Abstract][Full Text] [Related]
26. A comparative analysis of invaded sequences from group IA phospholipase A(2) genes provides evidence about the divergence period of genes groups and snake families. Fujimi TJ; Tsuchiya T; Tamiya T Toxicon; 2002 Jul; 40(7):873-84. PubMed ID: 12076640 [TBL] [Abstract][Full Text] [Related]
27. Sequence comparison and computer modelling of cardiotoxins and cobrotoxin isolated from Taiwan cobra. Chiou SH; Hung CC; Huang HC; Chen ST; Wang KT; Yang CC Biochem Biophys Res Commun; 1995 Jan; 206(1):22-32. PubMed ID: 7818523 [TBL] [Abstract][Full Text] [Related]
28. Comparison of three classes of snake neurotoxins by homology modeling and computer simulation graphics. Juan HF; Hung CC; Wang KT; Chiou SH Biochem Biophys Res Commun; 1999 Apr; 257(2):500-10. PubMed ID: 10198241 [TBL] [Abstract][Full Text] [Related]
29. Sequence characterization of venom toxins from Thailand cobra. Chiou SH; Lin WW; Chang WP Int J Pept Protein Res; 1989 Aug; 34(2):148-52. PubMed ID: 2807733 [TBL] [Abstract][Full Text] [Related]
30. Comparison of sea snake (Hydrophiidae) neurotoxin to cobra (Naja) neurotoxin. Komori Y; Nagamizu M; Uchiya K; Nikai T; Tu AT Toxins (Basel); 2009 Dec; 1(2):151-61. PubMed ID: 22069537 [TBL] [Abstract][Full Text] [Related]
31. Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes. Jiang Y; Li Y; Lee W; Xu X; Zhang Y; Zhao R; Zhang Y; Wang W BMC Genomics; 2011 Jan; 12():1. PubMed ID: 21194499 [TBL] [Abstract][Full Text] [Related]
32. Alpha-neurotoxin gene expression in Naja sputatrix: identification of a silencer element in the promoter region. Ma D; Armugam A; Jeyaseelan K Arch Biochem Biophys; 2002 Aug; 404(1):98-105. PubMed ID: 12127074 [TBL] [Abstract][Full Text] [Related]
33. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Laustsen AH; Gutiérrez JM; Lohse B; Rasmussen AR; Fernández J; Milbo C; Lomonte B Toxicon; 2015 Jun; 99():23-35. PubMed ID: 25771242 [TBL] [Abstract][Full Text] [Related]
34. Six isoforms of cardiotoxin in malayan spitting cobra (Naja naja sputatrix) venom: cloning and characterization of cDNAs. Jeyaseelan K; Armugam A; Lachumanan R; Tan CH; Tan NH Biochim Biophys Acta; 1998 Apr; 1380(2):209-22. PubMed ID: 9565688 [TBL] [Abstract][Full Text] [Related]
35. Improved method for the isolation, characterization and examination of neuromuscular and toxic properties of selected polypeptide fractions from the crude venom of the Taiwan cobra Naja naja atra. Ständker L; Harvey AL; Fürst S; Mathes I; Forssmann WG; Escalona de Motta G; Béress L Toxicon; 2012 Sep; 60(4):623-31. PubMed ID: 22677803 [TBL] [Abstract][Full Text] [Related]
36. Isolation and characterization of two toxins from the venom of the Malayan cobra (Naja naja sputatrix). Tan NH Toxicon; 1983; 21(2):201-7. PubMed ID: 6857705 [TBL] [Abstract][Full Text] [Related]
37. Lack of the blocking effect of cobrotoxin from Naja naja atra venom on neuromuscular transmission in isolated nerve muscle preparations from poisonous and non-poisonous snakes. Liu YB; Xu K Toxicon; 1990; 28(9):1071-6. PubMed ID: 2175458 [TBL] [Abstract][Full Text] [Related]
38. Acetylcholine receptor binding characteristics of snake and cone snail venom postsynaptic neurotoxins: further studies with a non-radioactive assay. Stiles BG Toxicon; 1993 Jul; 31(7):825-34. PubMed ID: 8212028 [TBL] [Abstract][Full Text] [Related]
39. Raman spectra of some snake venom components. Takamatsu T; Harada I; Hayashi K Biochim Biophys Acta; 1980 Apr; 622(2):189-200. PubMed ID: 7378448 [TBL] [Abstract][Full Text] [Related]
40. Purification and characterization of a novel antinociceptive toxin from Cobra venom (Naja naja atra). Jiang WJ; Liang YX; Han LP; Qiu PX; Yuan J; Zhao SJ Toxicon; 2008 Oct; 52(5):638-46. PubMed ID: 18765245 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]