These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9499034)

  • 21. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing.
    Zeng Y; Fair BJ; Zeng H; Krishnamohan A; Hou Y; Hall JM; Ruthenburg AJ; Li YI; Staley JP
    Mol Cell; 2022 Dec; 82(24):4681-4699.e8. PubMed ID: 36435176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of intron length on exon creation ratios during the evolution of mammalian genomes.
    Roy M; Kim N; Xing Y; Lee C
    RNA; 2008 Nov; 14(11):2261-73. PubMed ID: 18796579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The strength of the HIV-1 3' splice sites affects Rev function.
    Kammler S; Otte M; Hauber I; Kjems J; Hauber J; Schaal H
    Retrovirology; 2006 Dec; 3():89. PubMed ID: 17144911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Molecular mechanism of mRNA alternative splicing].
    Zhang GW; Song HD; Chen Z
    Yi Chuan Xue Bao; 2004 Jan; 31(1):102-7. PubMed ID: 15468927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alternative splicing of beta-tropomyosin pre-mRNA: multiple cis-elements can contribute to the use of the 5'- and 3'-splice sites of the nonmuscle/smooth muscle exon 6.
    Tsukahara T; Casciato C; Helfman DM
    Nucleic Acids Res; 1994 Jun; 22(12):2318-25. PubMed ID: 8036160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A combinatorial role for exon, intron and splice site sequences in splicing in maize.
    Carle-Urioste JC; Brendel V; Walbot V
    Plant J; 1997 Jun; 11(6):1253-63. PubMed ID: 9225466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The 5' leader of plant PgiC has an intron: the leader shows both the loss and maintenance of constraints compared with introns and exons in the coding region.
    Gottlieb LD; Ford VS
    Mol Biol Evol; 2002 Sep; 19(9):1613-23. PubMed ID: 12200488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exon definition as a potential negative force against intron losses in evolution.
    Niu DK
    Biol Direct; 2008 Nov; 3():46. PubMed ID: 19014515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A unique intronic splicing enhancer controls the inclusion of the agrin Y exon.
    Wei N; Lin CQ; Modafferi EF; Gomes WA; Black DL
    RNA; 1997 Nov; 3(11):1275-88. PubMed ID: 9409619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The small nonstructural protein (NS2) of the parvovirus minute virus of mice is required for efficient DNA replication and infectious virus production in a cell-type-specific manner.
    Naeger LK; Cater J; Pintel DJ
    J Virol; 1990 Dec; 64(12):6166-75. PubMed ID: 2147041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of antibodies to the polypyrimidine tract binding protein (PTB) to analyze the protein components that assemble on alternatively spliced pre-mRNAs that use distant branch points.
    Grossman JS; Meyer MI; Wang YC; Mulligan GJ; Kobayashi R; Helfman DM
    RNA; 1998 Jun; 4(6):613-25. PubMed ID: 9622121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Replication of minute virus of mice DNA is critically dependent on accumulated levels of NS2.
    Choi EY; Newman AE; Burger L; Pintel D
    J Virol; 2005 Oct; 79(19):12375-81. PubMed ID: 16160164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three splicing patterns are used to excise the small intron common to all minute virus of mice RNAs.
    Morgan WR; Ward DC
    J Virol; 1986 Dec; 60(3):1170-4. PubMed ID: 3783817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells.
    Eichwald V; Daeffler L; Klein M; Rommelaere J; Salomé N
    J Virol; 2002 Oct; 76(20):10307-19. PubMed ID: 12239307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of two distinct intron elements involved in alternative splicing of beta-tropomyosin pre-mRNA.
    Helfman DM; Roscigno RF; Mulligan GJ; Finn LA; Weber KS
    Genes Dev; 1990 Jan; 4(1):98-110. PubMed ID: 2307372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo recognition of a vertebrate mini-exon as an exon-intron-exon unit.
    Sterner DA; Berget SM
    Mol Cell Biol; 1993 May; 13(5):2677-87. PubMed ID: 7682652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure.
    Damgaard CK; Tange TO; Kjems J
    RNA; 2002 Nov; 8(11):1401-15. PubMed ID: 12458794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene.
    Romano M; Marcucci R; Baralle FE
    Nucleic Acids Res; 2001 Feb; 29(4):886-94. PubMed ID: 11160920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of exon sequences in splice site selection.
    Watakabe A; Tanaka K; Shimura Y
    Genes Dev; 1993 Mar; 7(3):407-18. PubMed ID: 8449402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Investigating the intron recognition mechanism in eukaryotes.
    Collins L; Penny D;
    Mol Biol Evol; 2006 May; 23(5):901-10. PubMed ID: 16371412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.