These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9499122)

  • 1. N-terminal protease of pestiviruses: identification of putative catalytic residues by site-directed mutagenesis.
    Rümenapf T; Stark R; Heimann M; Thiel HJ
    J Virol; 1998 Mar; 72(3):2544-7. PubMed ID: 9499122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease Npro.
    Gottipati K; Acholi S; Ruggli N; Choi KH
    Virology; 2014 Mar; 452-453():303-9. PubMed ID: 24606708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases.
    Gorbalenya AE; Donchenko AP; Koonin EV; Blinov VM
    Nucleic Acids Res; 1989 May; 17(10):3889-97. PubMed ID: 2543956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro synthesis of West Nile virus proteins indicates that the amino-terminal segment of the NS3 protein contains the active centre of the protease which cleaves the viral polyprotein after multiple basic amino acids.
    Wengler G; Czaya G; Färber PM; Hegemann JH
    J Gen Virol; 1991 Apr; 72 ( Pt 4)():851-8. PubMed ID: 1826736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis.
    Liu B; Clarke IN; Lambden PR
    J Virol; 1996 Apr; 70(4):2605-10. PubMed ID: 8642693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus.
    Baker SC; Yokomori K; Dong S; Carlisle R; Gorbalenya AE; Koonin EV; Lai MM
    J Virol; 1993 Oct; 67(10):6056-63. PubMed ID: 8396668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.
    Romanyuk ND; Rigden DJ; Vatamaniuk OK; Lang A; Cahoon RE; Jez JM; Rea PA
    Plant Physiol; 2006 Jul; 141(3):858-69. PubMed ID: 16714405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of essential amino acid residues in the functional activity of poliovirus 2A protease.
    Yu SF; Lloyd RE
    Virology; 1991 Jun; 182(2):615-25. PubMed ID: 1850921
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Mann KS; Chisholm J; Sanfaçon H
    J Virol; 2019 Mar; 93(5):. PubMed ID: 30541838
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of the active site residues in the nsP2 proteinase of Sindbis virus.
    Strauss EG; De Groot RJ; Levinson R; Strauss JH
    Virology; 1992 Dec; 191(2):932-40. PubMed ID: 1448929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Papain-like proteinase of turnip yellow mosaic virus: a prototype of a new viral proteinase group.
    Rozanov MN; Drugeon G; Haenni AL
    Arch Virol; 1995; 140(2):273-88. PubMed ID: 7710355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites.
    Lejal N; Da Costa B; Huet JC; Delmas B
    J Gen Virol; 2000 Apr; 81(Pt 4):983-92. PubMed ID: 10725424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases.
    Snijder EJ; Wassenaar AL; Spaan WJ; Gorbalenya AE
    J Biol Chem; 1995 Jul; 270(28):16671-6. PubMed ID: 7622476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel pestivirus originating from a pronghorn antelope.
    Vilcek S; Ridpath JF; Van Campen H; Cavender JL; Warg J
    Virus Res; 2005 Mar; 108(1-2):187-93. PubMed ID: 15681069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the roles of conserved cysteine and histidine residues in poliovirus 2A protease.
    Yu SF; Lloyd RE
    Virology; 1992 Feb; 186(2):725-35. PubMed ID: 1310193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and characterization of a hepatitis C virus NS3 protease-dependent bovine viral diarrhea virus.
    Lai VC; Zhong W; Skelton A; Ingravallo P; Vassilev V; Donis RO; Hong Z; Lau JY
    J Virol; 2000 Jul; 74(14):6339-47. PubMed ID: 10864644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the cleavage site recognized by the turnip yellow mosaic virus protease.
    Bransom KL; Wallace SE; Dreher TW
    Virology; 1996 Mar; 217(1):404-6. PubMed ID: 8599230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yellow fever virus NS2B-NS3 protease: charged-to-alanine mutagenesis and deletion analysis define regions important for protease complex formation and function.
    Droll DA; Krishna Murthy HM; Chambers TJ
    Virology; 2000 Sep; 275(2):335-47. PubMed ID: 10998334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beet yellows closterovirus: complete genome structure and identification of a leader papain-like thiol protease.
    Agranovsky AA; Koonin EV; Boyko VP; Maiss E; Frötschl R; Lunina NA; Atabekov JG
    Virology; 1994 Jan; 198(1):311-24. PubMed ID: 8259666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of active site residues of the Tsp protease.
    Keiler KC; Sauer RT
    J Biol Chem; 1995 Dec; 270(48):28864-8. PubMed ID: 7499412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.