These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9499710)

  • 1. Preparing the heart, eye, and brain: foreperiod length effects in a nonaging paradigm.
    Jennings JR; van der Molen MW; Steinhauer SR
    Psychophysiology; 1998 Jan; 35(1):90-8. PubMed ID: 9499710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Being prepared on time: on the importance of the previous foreperiod to current preparation, as reflected in speed, force and preparation-related brain potentials.
    Van der Lubbe RH; Los SA; Jaśkowski P; Verleger R
    Acta Psychol (Amst); 2004 Jul; 116(3):245-62. PubMed ID: 15222969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparing hearts and minds: cardiac slowing and a cortical inhibitory network.
    Jennings JR; van der Molen MW; Tanase C
    Psychophysiology; 2009 Nov; 46(6):1170-8. PubMed ID: 19572902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural modulation by regularity and passage of time.
    Correa A; Nobre AC
    J Neurophysiol; 2008 Sep; 100(3):1649-55. PubMed ID: 18632896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specificity of temporal expectancy: evidence from a variable foreperiod paradigm.
    Thomaschke R; Wagener A; Kiesel A; Hoffmann J
    Q J Exp Psychol (Hove); 2011 Dec; 64(12):2289-300. PubMed ID: 21970615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dual nature of time preparation: neural activation and suppression revealed by transcranial magnetic stimulation of the motor cortex.
    Davranche K; Tandonnet C; Burle B; Meynier C; Vidal F; Hasbroucq T
    Eur J Neurosci; 2007 Jun; 25(12):3766-74. PubMed ID: 17610596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of attentional allocation in the dual task paradigm.
    Karatekin C
    Int J Psychophysiol; 2004 Mar; 52(1):7-21. PubMed ID: 15003369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphetamine and the adenosine A(2A) antagonist KW-6002 enhance the effects of conditional temporal probability of a stimulus in rats.
    O'Neill M; Brown VJ
    Behav Neurosci; 2007 Jun; 121(3):535-42. PubMed ID: 17592944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lengthening fixed preparatory foreperiod durations within a digit magnitude classification task serves mainly to shift distributions of response times upwards.
    Leth-Steensen C
    Acta Psychol (Amst); 2009 Jan; 130(1):72-80. PubMed ID: 19041084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the heart know what the eye sees? A cardiac/pupillometric analysis of motor preparation and response execution.
    van der Molen MW; Boomsma DI; Jennings JR; Nieuwboer RT
    Psychophysiology; 1989 Jan; 26(1):70-80. PubMed ID: 2922458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction time changes with the hazard rate for a behaviorally relevant event when monkeys perform a delayed wrist movement task.
    Tsunoda Y; Kakei S
    Neurosci Lett; 2008 Mar; 433(2):152-7. PubMed ID: 18243554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus.
    Narayanan NS; Horst NK; Laubach M
    Neuroscience; 2006; 139(3):865-76. PubMed ID: 16500029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cue validity effects in response preparation: a pupillometric study.
    Moresi S; Adam JJ; Rijcken J; Van Gerven PW
    Brain Res; 2008 Feb; 1196():94-102. PubMed ID: 18222417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain dynamics in the auditory oddball task as a function of stimulus intensity and task requirements.
    Barry RJ; Rushby JA; Smith JL; Clarke AR; Croft RJ
    Int J Psychophysiol; 2009 Sep; 73(3):313-25. PubMed ID: 19460406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective activation and deactivation of the human brain structures between speeded and precisely timed tapping responses to identical visual stimulus: an fMRI study.
    Kudo K; Miyazaki M; Kimura T; Yamanaka K; Kadota H; Hirashima M; Nakajima Y; Nakazawa K; Ohtsuki T
    Neuroimage; 2004 Jul; 22(3):1291-301. PubMed ID: 15219601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulus-Preceding Negativity and heart rate changes in anticipation of affective pictures.
    Poli S; Sarlo M; Bortoletto M; Buodo G; Palomba D
    Int J Psychophysiol; 2007 Jul; 65(1):32-9. PubMed ID: 17395326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pupil dilation in response preparation.
    Moresi S; Adam JJ; Rijcken J; Van Gerven PW; Kuipers H; Jolles J
    Int J Psychophysiol; 2008 Feb; 67(2):124-30. PubMed ID: 18067982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of preparatory schema on the speed of responses to spatially compatible and incompatible stimuli.
    Jennings JR; van der Molen MW; Van der Veen FM; Debski KB
    Psychophysiology; 2002 Jul; 39(4):496-504. PubMed ID: 12212642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring.
    Vallesi A; McIntosh AR; Shallice T; Stuss DT
    J Cogn Neurosci; 2009 Jun; 21(6):1116-26. PubMed ID: 18752413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of daytime 50 Hz, 100 microT(rms) magnetic field or bright light exposure effect on human performance and psychophysiological parameters.
    Crasson M; Legros JJ
    Bioelectromagnetics; 2005 Apr; 26(3):225-33. PubMed ID: 15768425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.