BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9500032)

  • 1. Tumor oxygenation under normobaric and hyperbaric hyperoxia. Impact of various inspiratory CO2 concentrations.
    Thews O; Kelleher DK; Vaupel P
    Adv Exp Med Biol; 1997; 428():79-87. PubMed ID: 9500032
    [No Abstract]   [Full Text] [Related]  

  • 2. Dynamics of tumor oxygenation and red blood cell flux in response to inspiratory hyperoxia combined with different levels of inspiratory hypercapnia.
    Thews O; Kelleher DK; Vaupel P
    Radiother Oncol; 2002 Jan; 62(1):77-85. PubMed ID: 11830315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal changes in tumor oxygenation and perfusion upon normo- and hyperbaric inspiratory hyperoxia.
    Thews O; Vaupel P
    Strahlenther Onkol; 2016 Mar; 192(3):174-81. PubMed ID: 26501141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial oxygenation profiles in tumors during normo- and hyperbaric hyperoxia.
    Thews O; Vaupel P
    Strahlenther Onkol; 2015 Nov; 191(11):875-82. PubMed ID: 26135917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperbaric oxygenation of experimental tumors.
    Thews O; Kelleher DK; Vaupel P
    Strahlenther Onkol; 1996 Nov; 172 Suppl 2():24-5. PubMed ID: 8946042
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of cell line and differentiation on the oxygenation status of experimental sarcomas.
    Thews O; Kelleher DK; Lecher B; Vaupel P
    Adv Exp Med Biol; 1997; 428():123-8. PubMed ID: 9500037
    [No Abstract]   [Full Text] [Related]  

  • 7. Tumor oxygenation in anemic rats: effects of erythropoietin treatment versus red blood cell transfusion.
    Kelleher DK; Matthiensen U; Thews O; Vaupel P
    Acta Oncol; 1995; 34(3):379-84. PubMed ID: 7779426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen measurements in brain stem slices exposed to normobaric hyperoxia and hyperbaric oxygen.
    Mulkey DK; Henderson RA; Olson JE; Putnam RW; Dean JB
    J Appl Physiol (1985); 2001 May; 90(5):1887-99. PubMed ID: 11299283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of tumor volume in 'reoxygenation' upon cyclophosphamide treatment.
    Busse M; Vaupel PW
    Acta Oncol; 1995; 34(3):405-8. PubMed ID: 7779431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of association between tumor oxygenation and cell cycle distribution or proliferation kinetics in experimental sarcomas.
    Thews O; Kelleher DK; Vaupel P
    Adv Exp Med Biol; 2003; 540():245-50. PubMed ID: 15174626
    [No Abstract]   [Full Text] [Related]  

  • 11. [Blood carbon dioxide tension and its effect on the oxygen transport in the rat brain during normobaric hyperoxia].
    Sokolova IB; Vovenko EP
    Ross Fiziol Zh Im I M Sechenova; 1998; 84(5-6):536-40. PubMed ID: 9785421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microarray analysis of gene expression in rat cortical neurons exposed to hyperbaric air and oxygen.
    Chen Y; Nadi NS; Chavko M; Auker CR; McCarron RM
    Neurochem Res; 2009 Jun; 34(6):1047-56. PubMed ID: 19015983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normobaric hyperoxia (95% O₂) stimulates CO₂-sensitive and CO₂-insensitive neurons in the caudal solitary complex of rat medullary tissue slices maintained in 40% O₂.
    Matott MP; Ciarlone GE; Putnam RW; Dean JB
    Neuroscience; 2014 Jun; 270():98-122. PubMed ID: 24704511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen transport in the rat brain cortex at normobaric hyperoxia.
    Ivanov KP; Sokolova IB; Vovenko EP
    Eur J Appl Physiol Occup Physiol; 1999; 80(6):582-7. PubMed ID: 10541925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbaric oxygen and chemical oxidants stimulate CO2/H+-sensitive neurons in rat brain stem slices.
    Mulkey DK; Henderson RA; Putnam RW; Dean JB
    J Appl Physiol (1985); 2003 Sep; 95(3):910-21. PubMed ID: 12704094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia.
    Liu S; Liu W; Ding W; Miyake M; Rosenberg GA; Liu KJ
    J Cereb Blood Flow Metab; 2006 Oct; 26(10):1274-84. PubMed ID: 16421507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A potential early physiological marker for CNS oxygen toxicity: hyperoxic hyperpnea precedes seizure in unanesthetized rats breathing hyperbaric oxygen.
    Pilla R; Landon CS; Dean JB
    J Appl Physiol (1985); 2013 Apr; 114(8):1009-20. PubMed ID: 23429869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant reduction of the panretinal oxygenation response after 28% supplemental oxygen recovery in experimental ROP.
    Berkowitz BA; Zhang W
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1925-31. PubMed ID: 10845618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed hyperbaric oxygenation is more effective than early prolonged normobaric hyperoxia in experimental focal cerebral ischemia.
    Beynon C; Sun L; Marti HH; Heiland S; Veltkamp R
    Neurosci Lett; 2007 Oct; 425(3):141-5. PubMed ID: 17850964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient exposure of rat pups to hyperoxia at normobaric and hyperbaric pressures does not cause retinopathy of prematurity.
    Calvert JW; Zhou C; Zhang JH
    Exp Neurol; 2004 Sep; 189(1):150-61. PubMed ID: 15296845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.