BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 9500851)

  • 1. Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat livers.
    Shimada H; Hirai K; Simamura E; Pan J
    Arch Biochem Biophys; 1998 Mar; 351(1):75-81. PubMed ID: 9500851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.
    Frei B; Winterhalter KH; Richter C
    Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paraquat toxicity induced by voltage-dependent anion channel 1 acts as an NADH-dependent oxidoreductase.
    Shimada H; Hirai K; Simamura E; Hatta T; Iwakiri H; Mizuki K; Hatta T; Sawasaki T; Matsunaga S; Endo Y; Shimizu S
    J Biol Chem; 2009 Oct; 284(42):28642-9. PubMed ID: 19717555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli.
    Hayashi M; Hasegawa K; Oguni Y; Unemoto T
    Biochim Biophys Acta; 1990 Aug; 1035(2):230-6. PubMed ID: 2118386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity.
    Wefers H; Sies H
    Arch Biochem Biophys; 1983 Jul; 224(2):568-78. PubMed ID: 6191666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel plasma membrane quinone reductase and NAD(P)H:quinone oxidoreductase 1 are upregulated by serum withdrawal in human promyelocytic HL-60 cells.
    Forthoffer N; Gómez-Díaz C; Bello RI; Burón MI; Martín SF; Rodríguez-Aguilera JC; Navas P; Villalba JM
    J Bioenerg Biomembr; 2002 Jun; 34(3):209-19. PubMed ID: 12171070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinoneimines as substrates for quinone reductase (NAD(P)H: (quinone-acceptor)oxidoreductase) and the effect of dicumarol on their cytotoxicity.
    Powis G; See KL; Santone KS; Melder DC; Hodnett EM
    Biochem Pharmacol; 1987 Aug; 36(15):2473-9. PubMed ID: 2440444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The enzymology of doxorubicin quinone reduction in tumour tissue.
    Cummings J; Allan L; Willmott N; Riley R; Workman P; Smyth JF
    Biochem Pharmacol; 1992 Dec; 44(11):2175-83. PubMed ID: 1472082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paraquat damage of rat liver mitochondria by superoxide production depends on extramitochondrial NADH.
    Hirai K; Ikeda K; Wang GY
    Toxicology; 1992; 72(1):1-16. PubMed ID: 1347181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitroreductase activity of NADH dehydrogenase of the respiratory redox chain.
    Smyth GE; Orsi BA
    Biochem J; 1989 Feb; 257(3):859-63. PubMed ID: 2494990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External mitochondrial NADH-dependent reductase of redox cyclers: VDAC1 or Cyb5R3?
    Nikiforova AB; Saris NE; Kruglov AG
    Free Radic Biol Med; 2014 Sep; 74():74-84. PubMed ID: 24945955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochemical energy-filtering transmission electron microscopy of mitochondrial free radical formation in paraquat cytotoxicity.
    Hirai K; Pan J; Shimada H; Izuhara T; Kurihara T; Moriguchi K
    J Electron Microsc (Tokyo); 1999; 48(3):289-96. PubMed ID: 10425747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histochemical detection of quinone reductase activity in situ using LY 83583 reduction and oxidation.
    Murphy TH; So AP; Vincent SR
    J Neurochem; 1998 May; 70(5):2156-64. PubMed ID: 9572303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrhenius plots of membrane-bound enzymes of mitochondria and microsomes in the brain cortex of developing and old rats.
    Gorgani MN; Pour-Rahimi F; Meisami E
    Mech Ageing Dev; 1986 Jun; 35(1):1-15. PubMed ID: 3736127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.
    Kukiełka E; Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct protective effect of NAD(P)H:quinone reductase against menadione-induced chemiluminescence of postmitochondrial fractions of mouse liver.
    Prochaska HJ; Talalay P; Sies H
    J Biol Chem; 1987 Feb; 262(5):1931-4. PubMed ID: 2434474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caffeine, aminoimidazolecarboxamide and dicoumarol, inhibitors of NAD(P)H dehydrogenase (quinone) (DT diaphorase), prevent both the cytotoxicity and DNA interstrand crosslinking produced by 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) in Walker cells.
    Roberts JJ; Marchbank T; Kotsaki-Kovatsi VP; Boland MP; Friedlos F; Knox RJ
    Biochem Pharmacol; 1989 Nov; 38(22):4137-43. PubMed ID: 2480794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and partial purification of microsomal NAD(P)H:quinone oxidoreductases.
    Jaiswal AK
    Arch Biochem Biophys; 2000 Mar; 375(1):62-8. PubMed ID: 10683249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase.
    Dicker E; Cederbaum AI
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.