These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9500878)

  • 21. Immunocytochemical analysis of the regeneration of myofibrils in long-term cultures of adult cardiomyocytes of the rat.
    Eppenberger ME; Hauser I; Baechi T; Schaub MC; Brunner UT; Dechesne CA; Eppenberger HM
    Dev Biol; 1988 Nov; 130(1):1-15. PubMed ID: 2903104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 cells.
    Zegers MM; Zaal KJ; van IJzendoorn SC; Klappe K; Hoekstra D
    Mol Biol Cell; 1998 Jul; 9(7):1939-49. PubMed ID: 9658181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beating rate of isolated neonatal cardiomyocytes is regulated by the stable microtubule subset.
    Webster DR; Patrick DL
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1653-61. PubMed ID: 10775146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of fibroblast growth factor (bFGF) and insulin-like growth factor (IGF-I) on cytoskeletal and contractile structures and on atrial natriuretic factor (ANF) expression in adult rat ventricular cardiomyocytes in culture.
    Harder BA; Schaub MC; Eppenberger HM; Eppenberger-Eberhardt M
    J Mol Cell Cardiol; 1996 Jan; 28(1):19-31. PubMed ID: 8745211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microtubules, microfilaments and the transport of acetylcholine receptors in embryonic myotubes.
    Connolly JA
    Exp Cell Res; 1985 Aug; 159(2):430-40. PubMed ID: 4040866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The distribution and requirements of microtubules and microfilaments during fertilization and parthenogenesis in pig oocytes.
    Kim NH; Chung KS; Day BN
    J Reprod Fertil; 1997 Sep; 111(1):143-9. PubMed ID: 9370978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of microtubules with peroxisomes. Tubular and spherical peroxisomes in HepG2 cells and their alterations induced by microtubule-active drugs.
    Schrader M; Burkhardt JK; Baumgart E; Lüers G; Spring H; Völkl A; Fahimi HD
    Eur J Cell Biol; 1996 Jan; 69(1):24-35. PubMed ID: 8825021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor proteins regulate force interactions between microtubules and microfilaments in the axon.
    Ahmad FJ; Hughey J; Wittmann T; Hyman A; Greaser M; Baas PW
    Nat Cell Biol; 2000 May; 2(5):276-80. PubMed ID: 10806478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex.
    Valderrama F; Babià T; Ayala I; Kok JW; Renau-Piqueras J; Egea G
    Eur J Cell Biol; 1998 May; 76(1):9-17. PubMed ID: 9650778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemotactic peptide-induced changes of intermediate filament organization in neutrophils during granule secretion: role of cyclic guanosine monophosphate.
    Pryzwansky KB; Merricks EP
    Mol Biol Cell; 1998 Oct; 9(10):2933-47. PubMed ID: 9763453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opposing microtubule- and actin-dependent forces in the development and maintenance of structural polarity in retinal photoreceptors.
    Madreperla SA; Adler R
    Dev Biol; 1989 Jan; 131(1):149-60. PubMed ID: 2642427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of cytoskeletal architecture by the src-suppressed C kinase substrate, SSeCKS.
    Gelman IH; Lee K; Tombler E; Gordon R; Lin X
    Cell Motil Cytoskeleton; 1998; 41(1):1-17. PubMed ID: 9744295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of post-translationally modified microtubule populations during neonatal cardiac development.
    Webster DR
    J Mol Cell Cardiol; 1997 Jun; 29(6):1747-61. PubMed ID: 9220360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of binucleated cardiac myocytes in rat heart: II. Cytoskeletal organisation.
    Li F; Wang X; Gerdes AM
    J Mol Cell Cardiol; 1997 Jun; 29(6):1553-65. PubMed ID: 9220341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rearrangement of tubulin, actin, and myosin in cultured ventricular cardiomyocytes of the adult rat.
    Guo JX; Jacobson SL; Brown DL
    Cell Motil Cytoskeleton; 1986; 6(3):291-304. PubMed ID: 3527454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microtubules are critical for radial glial morphology: possible regulation by MAPs and MARKs.
    Li H; Berlin Y; Hart RP; Grumet M
    Glia; 2003 Oct; 44(1):37-46. PubMed ID: 12951655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Triiodothyronine restricts myofibrillar growth and enhances beating frequency in cultured adult rat cardiomyocytes.
    Schaub MC; Hefti MA; Harder BA; Eppenberger HM
    Basic Res Cardiol; 1998 Oct; 93(5):391-5. PubMed ID: 9833151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-cadherin is required for the differentiation and initial myofibrillogenesis of chick cardiomyocytes.
    Imanaka-Yoshida K; Knudsen KA; Linask KK
    Cell Motil Cytoskeleton; 1998; 39(1):52-62. PubMed ID: 9453713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cultured rat skeletal muscle cells treated with cytochalasin exhibit normal dystrophin expression and intracellular free calcium control.
    Constantin B; Imbert N; Besse C; Cognard C; Raymond G
    Biol Cell; 1995; 85(2-3):125-35. PubMed ID: 8785514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.