BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9501139)

  • 1. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants.
    Cohen CK; Fox TC; Garvin DF; Kochian LV
    Plant Physiol; 1998 Mar; 116(3):1063-72. PubMed ID: 9501139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil.
    Cohen CK; Garvin DF; Kochian LV
    Planta; 2004 Mar; 218(5):784-92. PubMed ID: 14648120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Measurement of 59Fe-Labeled Fe2+ Influx in Roots of Pea Using a Chelator Buffer System to Control Free Fe2+ in Solution.
    Fox TC; Shaff JE; Grusak MA; Norvell WA; Chen Y; Chaney RL; Kochian LV
    Plant Physiol; 1996 May; 111(1):93-100. PubMed ID: 12226276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Characterization of Root Zn2+ Absorption and Translocation to Shoots in Zn Hyperaccumulator and Nonaccumulator Species of Thlaspi.
    Lasat MM; Baker A; Kochian LV
    Plant Physiol; 1996 Dec; 112(4):1715-1722. PubMed ID: 12226473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings.
    Hart JJ; Welch RM; Norvell WA; Kochian LV
    Physiol Plant; 2002 Sep; 116(1):73-78. PubMed ID: 12207664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of the Root Cell Plasma Membrane Ferric Reductase (An Exclusive Role for Fe and Cu).
    Cohen CK; Norvell WA; Kochian LV
    Plant Physiol; 1997 Jul; 114(3):1061-1069. PubMed ID: 12223760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does Iron Deficiency in Pisum sativum Enhance the Activity of the Root Plasmalemma Iron Transport Protein?
    Grusak MA; Welch RM; Kochian LV
    Plant Physiol; 1990 Nov; 94(3):1353-7. PubMed ID: 16667840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.
    Lešková A; Giehl RFH; Hartmann A; Fargašová A; von Wirén N
    Plant Physiol; 2017 Jul; 174(3):1648-1668. PubMed ID: 28500270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NRAMP1 promotes iron uptake at the late stage of iron deficiency in poplars.
    Chen HM; Wang YM; Yang HL; Zeng QY; Liu YJ
    Tree Physiol; 2019 Jul; 39(7):1235-1250. PubMed ID: 31115467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological Characterization of a Single-Gene Mutant of Pisum sativum Exhibiting Excess Iron Accumulation: I. Root Iron Reduction and Iron Uptake.
    Grusak MA; Welch RM; Kochian LV
    Plant Physiol; 1990 Jul; 93(3):976-81. PubMed ID: 16667609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency.
    Chen C; Cao Q; Jiang Q; Li J; Yu R; Shi G
    BMC Plant Biol; 2019 Jan; 19(1):35. PubMed ID: 30665365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological Characteristics of Fe Accumulation in the ;Bronze' Mutant of Pisum sativum L., cv ;Sparkle' E107 (brz brz).
    Welch RM; Larue TA
    Plant Physiol; 1990 Jun; 93(2):723-9. PubMed ID: 16667529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.
    Zhou C; Liu Z; Zhu L; Ma Z; Wang J; Zhu J
    Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27792144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of iron deficiency on lead accumulation in Ailanthus altissima (Mill.) Swingle seedlings.
    Dunisijević Bojović D; Dukić M; Maksimović V; Skočajić D; Suručić L
    J Environ Qual; 2012; 41(5):1517-24. PubMed ID: 23099943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1).
    Mackenzie B; Takanaga H; Hubert N; Rolfs A; Hediger MA
    Biochem J; 2007 Apr; 403(1):59-69. PubMed ID: 17109629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divalent metal inhibition of non-haem iron uptake across the rat duodenal brush border membrane.
    Smith MW; Shenoy KB; Debnam ES; Dashwood MR; Churchill LJ; Srai SK
    Br J Nutr; 2002 Jul; 88(1):51-6. PubMed ID: 12117427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of bioaccumulation of cadmium on biomass productivity, essential trace elements, chlorophyll biosynthesis, and macromolecules of wheat seedlings.
    Shukla UC; Singh J; Joshi PC; Kakkar P
    Biol Trace Elem Res; 2003 Jun; 92(3):257-74. PubMed ID: 12794277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis.
    Gong JM; Lee DA; Schroeder JI
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):10118-23. PubMed ID: 12909714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The high-affinity metal Transporters NRAMP1 and IRT1 Team up to Take up Iron under Sufficient Metal Provision.
    Castaings L; Caquot A; Loubet S; Curie C
    Sci Rep; 2016 Nov; 6():37222. PubMed ID: 27849020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport.
    Banakar R; Alvarez Fernández Á; Abadía J; Capell T; Christou P
    Plant Biotechnol J; 2017 Apr; 15(4):423-432. PubMed ID: 27633505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.