BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9501190)

  • 1. Transport of the new chemotherapeutic agent beta-D-glucosylisophosphoramide mustard (D-19575) into tumor cells is mediated by the Na+-D-glucose cotransporter SAAT1.
    Veyhl M; Wagner K; Volk C; Gorboulev V; Baumgarten K; Weber WM; Schaper M; Bertram B; Wiessler M; Koepsell H
    Proc Natl Acad Sci U S A; 1998 Mar; 95(6):2914-9. PubMed ID: 9501190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation.
    Mackenzie B; Panayotova-Heiermann M; Loo DD; Lever JE; Wright EM
    J Biol Chem; 1994 Sep; 269(36):22488-91. PubMed ID: 8077195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of a Na+/D-glucose cotransporter from rat intestine expressed in oocytes of Xenopus laevis with the endogenous cotransporter.
    Weber WM; Püschel B; Steffgen J; Koepsell H; Schwarz W
    Biochim Biophys Acta; 1991 Mar; 1063(1):73-80. PubMed ID: 2015263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of glucosylifosfamide mustard biodistribution in rats with prostate adenocarcinomas by means of in vivo 31P NMR and in vitro uptake experiments.
    Haberkorn U; Krems B; Gerlach L; Bachert P; Morr I; Wiessler M; van Kaick G
    Magn Reson Med; 1998 May; 39(5):754-61. PubMed ID: 9581607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-clamp studies of the Na+/glucose cotransporter cloned from rabbit small intestine.
    Birnir B; Loo DD; Wright EM
    Pflugers Arch; 1991 Mar; 418(1-2):79-85. PubMed ID: 2041729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacokinetics and whole-body distribution of the new chemotherapeutic agent beta-D-glucosylisophosphoramide mustard and its effects on the incorporation of [methyl-3H]-thymidine in various tissues of the rat.
    Stüben J; Port R; Bertram B; Bollow U; Hull WE; Schaper M; Pohl J; Wiessler M
    Cancer Chemother Pharmacol; 1996; 38(4):355-65. PubMed ID: 8674159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine.
    Ikeda TS; Hwang ES; Coady MJ; Hirayama BA; Hediger MA; Wright EM
    J Membr Biol; 1989 Aug; 110(1):87-95. PubMed ID: 2795642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Na(+)-coupled sugar transport in HT-29 cells: modulation by glucose.
    Blais A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1245-52. PubMed ID: 2058655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter.
    Panayotova-Heiermann M; Loo DD; Wright EM
    J Biol Chem; 1995 Nov; 270(45):27099-105. PubMed ID: 7592962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-19575--a sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport.
    Pohl J; Bertram B; Hilgard P; Nowrousian MR; Stüben J; Wiessler M
    Cancer Chemother Pharmacol; 1995; 35(5):364-70. PubMed ID: 7850916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies.
    Parent L; Supplisson S; Loo DD; Wright EM
    J Membr Biol; 1992 Jan; 125(1):49-62. PubMed ID: 1542106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the reverse mode of the Na+/glucose cotransporter.
    Eskandari S; Wright EM; Loo DD
    J Membr Biol; 2005 Mar; 204(1):23-32. PubMed ID: 16007500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein.
    Panayotova-Heiermann M; Loo DD; Kong CT; Lever JE; Wright EM
    J Biol Chem; 1996 Apr; 271(17):10029-34. PubMed ID: 8626557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis of phlorizin binding and D-glucose transport measurements.
    Koepsell H; Fritzsch G; Korn K; Madrala A
    J Membr Biol; 1990 Mar; 114(2):113-32. PubMed ID: 2342089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two endogenous methyl-alpha-D-glucopyranoside uptake activities in Xenopus oocytes.
    Nagata K; Ichikawa O
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Sep; 112(1):115-22. PubMed ID: 7584840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation kinetics of the Na+/glucose cotransporter.
    Loo DD; Hazama A; Supplisson S; Turk E; Wright EM
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5767-71. PubMed ID: 8516326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and specificity differences between rat, human, and rabbit Na+-glucose cotransporters (SGLT-1).
    Hirayama BA; Lostao MP; Panayotova-Heiermann M; Loo DD; Turk E; Wright EM
    Am J Physiol; 1996 Jun; 270(6 Pt 1):G919-26. PubMed ID: 8764197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urea transport by cotransporters.
    Leung DW; Loo DD; Hirayama BA; Zeuthen T; Wright EM
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):251-7. PubMed ID: 11034615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and biologic evaluation of (11)c-methyl-d-glucoside, a tracer of the sodium-dependent glucose transporters.
    Bormans GM; Van Oosterwyck G; De Groot TJ; Veyhl M; Mortelmans L; Verbruggen AM; Koepsell H
    J Nucl Med; 2003 Jul; 44(7):1075-81. PubMed ID: 12843224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose.
    Kanai Y; Lee WS; You G; Brown D; Hediger MA
    J Clin Invest; 1994 Jan; 93(1):397-404. PubMed ID: 8282810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.