BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 9501494)

  • 81. The K tree score: quantification of differences in the relative branch length and topology of phylogenetic trees.
    Soria-Carrasco V; Talavera G; Igea J; Castresana J
    Bioinformatics; 2007 Nov; 23(21):2954-6. PubMed ID: 17890735
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Reconstructing ancestral genomic sequences by co-evolution: formal definitions, computational issues, and biological examples.
    Tuller T; Birin H; Kupiec M; Ruppin E
    J Comput Biol; 2010 Sep; 17(9):1327-44. PubMed ID: 20874411
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods.
    Duchene S; Duchene DA; Geoghegan JL; Dyson ZA; Hawkey J; Holt KE
    BMC Evol Biol; 2018 Jun; 18(1):95. PubMed ID: 29914372
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Molecular systematics and biogeography of the southern South american freshwater "crabs" Aegla (decapoda: Anomura: Aeglidae) using multiple heuristic tree search approaches.
    PĂ©rez-Losada M; Bond-Buckup G; Jara CG; Crandall KA
    Syst Biol; 2004 Oct; 53(5):767-80. PubMed ID: 15545254
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Evaluating variations on the STAR algorithm for relative efficiency and sample sizes needed to reconstruct species trees.
    Degnan JH
    Pac Symp Biocomput; 2013; ():262-72. PubMed ID: 23424131
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Ancestral sequence alignment under optimal conditions.
    Hudek AK; Brown DG
    BMC Bioinformatics; 2005 Nov; 6():273. PubMed ID: 16293191
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of apicomplexa.
    Morrison DA; Ellis JT
    Mol Biol Evol; 1997 Apr; 14(4):428-41. PubMed ID: 9100373
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Branch-and-bound approach for parsimonious inference of a species tree from a set of gene family trees.
    Doyon JP; Chauve C
    Adv Exp Med Biol; 2011; 696():287-95. PubMed ID: 21431569
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood.
    Berger SA; Krompass D; Stamatakis A
    Syst Biol; 2011 May; 60(3):291-302. PubMed ID: 21436105
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A new fast heuristic for computing the breakpoint phylogeny and experimental phylogenetic analyses of real and synthetic data.
    Cosner ME; Jansen RK; Moret BM; Raubeson LA; Wang LS; Warnow T; Wyman S
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():104-15. PubMed ID: 10977071
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle.
    Desper R; Gascuel O
    J Comput Biol; 2002; 9(5):687-705. PubMed ID: 12487758
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Scaling neighbor joining to one million taxa with dynamic and heuristic neighbor joining.
    Clausen PTLC
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36453849
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A fast algorithm for joint reconstruction of ancestral amino acid sequences.
    Pupko T; Pe'er I; Shamir R; Graur D
    Mol Biol Evol; 2000 Jun; 17(6):890-6. PubMed ID: 10833195
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL.
    Lewis LA; Mishler BD; Vilgalys R
    Mol Phylogenet Evol; 1997 Jun; 7(3):377-93. PubMed ID: 9187096
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Generalized neighbor-joining: more reliable phylogenetic tree reconstruction.
    Pearson WR; Robins G; Zhang T
    Mol Biol Evol; 1999 Jun; 16(6):806-16. PubMed ID: 10368958
    [TBL] [Abstract][Full Text] [Related]  

  • 96. On the fixed parameter tractability of agreement-based phylogenetic distances.
    Bordewich M; Scornavacca C; Tokac N; Weller M
    J Math Biol; 2017 Jan; 74(1-2):239-257. PubMed ID: 27221239
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A greedy alignment-free distance estimator for phylogenetic inference.
    Thankachan SV; Chockalingam SP; Liu Y; Krishnan A; Aluru S
    BMC Bioinformatics; 2017 Jun; 18(Suppl 8):238. PubMed ID: 28617225
    [TBL] [Abstract][Full Text] [Related]  

  • 98. On defining a unique phylogenetic tree with homoplastic characters.
    Goloboff PA; Wilkinson M
    Mol Phylogenet Evol; 2018 May; 122():95-101. PubMed ID: 29407481
    [TBL] [Abstract][Full Text] [Related]  

  • 99. TrExML: a maximum-likelihood approach for extensive tree-space exploration.
    Wolf MJ; Easteal S; Kahn M; McKay BD; Jermiin LS
    Bioinformatics; 2000 Apr; 16(4):383-94. PubMed ID: 10869037
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Theoretical foundation of the minimum-evolution method of phylogenetic inference.
    Rzhetsky A; Nei M
    Mol Biol Evol; 1993 Sep; 10(5):1073-95. PubMed ID: 8412650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.