These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 9501973)
1. Molecular evolution: old branches on the phytochrome family tree. Pepper AE Curr Biol; 1998 Feb; 8(4):R117-20. PubMed ID: 9501973 [No Abstract] [Full Text] [Related]
2. The impact of the phytochromes on photosynthetic processes. Kreslavski VD; Los DA; Schmitt FJ; Zharmukhamedov SK; Kuznetsov VV; Allakhverdiev SI Biochim Biophys Acta Bioenerg; 2018 May; 1859(5):400-408. PubMed ID: 29545089 [TBL] [Abstract][Full Text] [Related]
3. Phytochromes: More Than Meets the Eye. Rensing SA; Sheerin DJ; Hiltbrunner A Trends Plant Sci; 2016 Jul; 21(7):543-546. PubMed ID: 27270335 [TBL] [Abstract][Full Text] [Related]
5. Phytochrome evolution in green and nongreen plants. Mathews S J Hered; 2005; 96(3):197-204. PubMed ID: 15695552 [TBL] [Abstract][Full Text] [Related]
6. The evolution and function of blue and red light photoreceptors. Falciatore A; Bowler C Curr Top Dev Biol; 2005; 68():317-50. PubMed ID: 16125004 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary origin of phytochrome responses and signaling in land plants. Inoue K; Nishihama R; Kohchi T Plant Cell Environ; 2017 Nov; 40(11):2502-2508. PubMed ID: 28098347 [TBL] [Abstract][Full Text] [Related]
10. PNZIP is a novel mesophyll-specific cDNA that is regulated by phytochrome and the circadian rhythm and encodes a protein with a leucine zipper motif. Zheng CC; Porat R; Lu P; O'Neill SD Plant Physiol; 1998 Jan; 116(1):27-35. PubMed ID: 9449833 [TBL] [Abstract][Full Text] [Related]
12. Origin of sucrose metabolism in higher plants: when, how and why? Salerno GL; Curatti L Trends Plant Sci; 2003 Feb; 8(2):63-9. PubMed ID: 12597872 [TBL] [Abstract][Full Text] [Related]
13. Nucleotide and amino acid sequence of a Cucurbita phytochrome cDNA clone: identification of conserved features by comparison with Avena phytochrome. Sharrock RA; Lissemore JL; Quail PH Gene; 1986; 47(2-3):287-95. PubMed ID: 3557123 [TBL] [Abstract][Full Text] [Related]
14. Photosystem II assembly: from cyanobacteria to plants. Nickelsen J; Rengstl B Annu Rev Plant Biol; 2013; 64():609-35. PubMed ID: 23451783 [TBL] [Abstract][Full Text] [Related]
15. Evolution of cyanobacterial and plant phytochromes. Lamparter T FEBS Lett; 2004 Aug; 573(1-3):1-5. PubMed ID: 15327965 [TBL] [Abstract][Full Text] [Related]
16. Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms. Mathews S; Burleigh JG; Donoghue MJ Mol Biol Evol; 2003 Jul; 20(7):1087-97. PubMed ID: 12777523 [TBL] [Abstract][Full Text] [Related]
17. Coevolution of photosynthetic organisms and the environment. Beerling DJ Geobiology; 2009 Mar; 7(2):97-9. PubMed ID: 19338613 [No Abstract] [Full Text] [Related]
18. Divergence of the phytochrome gene family predates angiosperm evolution and suggests that Selaginella and Equisetum arose prior to Psilotum. Kolukisaoglu HU; Marx S; Wiegmann C; Hanelt S; Schneider-Poetsch HA J Mol Evol; 1995 Sep; 41(3):329-37. PubMed ID: 7563118 [TBL] [Abstract][Full Text] [Related]
19. The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Wilde A; Fiedler B; Börner T Mol Microbiol; 2002 May; 44(4):981-8. PubMed ID: 12010493 [TBL] [Abstract][Full Text] [Related]
20. The phytochromes: a biochemical mechanism of signaling in sight? Quail PH Bioessays; 1997 Jul; 19(7):571-9. PubMed ID: 9230690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]