These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9502017)

  • 1. The role of interstitial starling forces in the pathogenesis of burn edema.
    Kinsky MP; Guha SC; Button BM; Kramer GC
    J Burn Care Rehabil; 1998; 19(1 Pt 1):1-9. PubMed ID: 9502017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resuscitation of severe thermal injury with hypertonic saline dextran: effects on peripheral and visceral edema in sheep.
    Kinsky MP; Milner SM; Button B; Dubick MA; Kramer GC
    J Trauma; 2000 Nov; 49(5):844-53. PubMed ID: 11086774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High dose vitamin C counteracts the negative interstitial fluid hydrostatic pressure and early edema generation in thermally injured rats.
    Tanaka H; Lund T; Wiig H; Reed RK; Yukioka T; Matsuda H; Shimazaki S
    Burns; 1999 Nov; 25(7):569-74. PubMed ID: 10563680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Burn depth affects dermal interstitial fluid pressure, free radical production, and serum histamine levels in rats.
    Shimizu S; Tanaka H; Sakaki S; Yukioka T; Matsuda H; Shimazaki S
    J Trauma; 2002 Apr; 52(4):683-7. PubMed ID: 11956382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nonprotein colloid on postburn edema formation in soft tissues and lung.
    Demling RH; Kramer GC; Gunther R; Nerlich M
    Surgery; 1984 May; 95(5):593-602. PubMed ID: 6200946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenesis of edema formation in burn injuries.
    Lund T; Onarheim H; Reed RK
    World J Surg; 1992; 16(1):2-9. PubMed ID: 1290261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of thermal injury-induced hypoproteinemia on fluid flux and protein permeability in burned and nonburned tissue.
    Demling RH; Kramer G; Harms B
    Surgery; 1984 Feb; 95(2):136-44. PubMed ID: 6695330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 'new' mechanism for oedema generation: strongly negative interstitial fluid pressure causes rapid fluid flow into thermally injured skin.
    Lund T; Wiig H; Reed RK; Aukland K
    Acta Physiol Scand; 1987 Mar; 129(3):433-5. PubMed ID: 3577826
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in subcutaneous interstitial fluid pressure, tissue oxygenation, and skin red cell flux during venous congestion plethysmography in men.
    Christ F; Dellian M; Goetz AE; Gamble J; Messmer K
    Microcirculation; 1997 Mar; 4(1):75-81. PubMed ID: 9110285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute postburn edema: role of strongly negative interstitial fluid pressure.
    Lund T; Wiig H; Reed RK
    Am J Physiol; 1988 Nov; 255(5 Pt 2):H1069-74. PubMed ID: 3189570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal skin injury: effect of fluid therapy on the transcapillary colloid osmotic gradient.
    Onarheim H; Reed RK
    J Surg Res; 1991 Mar; 50(3):272-8. PubMed ID: 1999916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The burn edema process: current concepts.
    Demling RH
    J Burn Care Rehabil; 2005; 26(3):207-27. PubMed ID: 15879742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Burn resuscitation: crystalloid versus colloid versus hypertonic saline hyperoncotic colloid in sheep.
    Guha SC; Kinsky MP; Button B; Herndon DN; Traber LD; Traber DL; Kramer GC
    Crit Care Med; 1996 Nov; 24(11):1849-57. PubMed ID: 8917036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms behind increased dermal imbibition pressure in acute burn edema.
    Lund T; Onarheim H; Wiig H; Reed RK
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H940-8. PubMed ID: 2705564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early lung dysfunction after major burns: role of edema and vasoactive mediators.
    Demling RH; Wong C; Jin LJ; Hechtman H; Lalonde C; West K
    J Trauma; 1985 Oct; 25(10):959-66. PubMed ID: 2413227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation between pulmonary transvascular fluid filtration rate and measured Starling's forces after major burn.
    Demling RH; Manohar M; Will JA
    Chest; 1979 Oct; 76(4):448-52. PubMed ID: 477434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early pulmonary and hemodynamic effects of a chest wall burn (effect of ibuprofen).
    Demling RH; Zhu D; Lalonde C
    Surgery; 1988 Jul; 104(1):10-7. PubMed ID: 3388175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-volume resuscitation using hypertonic saline improves organ perfusion in burned rats.
    Kien ND; Antognini JF; Reilly DA; Moore PG
    Anesth Analg; 1996 Oct; 83(4):782-8. PubMed ID: 8831321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular changes in large flame burn wound in sheep.
    Sakurai H; Nozaki M; Traber LD; Hawkins HK; Traber DL
    Burns; 2002 Feb; 28(1):3-9. PubMed ID: 11834323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Starling forces and hemodynamics during early laminitis induced by an aqueous extract of black walnut (Juglans nigra) in horses.
    Eaton SA; Allen D; Eades SC; Schneider DA
    Am J Vet Res; 1995 Oct; 56(10):1338-44. PubMed ID: 8928952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.