These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 9502246)

  • 1. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    Neuroscience; 1998 Apr; 83(4):1063-73. PubMed ID: 9502246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat.
    Takakusaki K; Kitai ST
    Neuroscience; 1997 Jun; 78(3):771-94. PubMed ID: 9153657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons.
    Haghdoost-Yazdi H; Janahmadi M; Behzadi G
    Brain Res; 2008 May; 1212():1-8. PubMed ID: 18439989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of frequency selectivity by Na+- and K+-conductances in neurons of auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    Hear Res; 1999 Jan; 127(1-2):77-85. PubMed ID: 9925018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic response properties of bursting neurons in the nucleus principalis trigemini of the gerbil.
    Sandler VM; Puil E; Schwarz DW
    Neuroscience; 1998 Apr; 83(3):891-904. PubMed ID: 9483572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons.
    Nisenbaum ES; Xu ZC; Wilson CJ
    J Neurophysiol; 1994 Mar; 71(3):1174-89. PubMed ID: 8201411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane properties that shape the auditory code in three nuclei of the central nervous system.
    Schwarz DW; Tennigkeit F; Adam T; Finlayson P; Puil E
    J Otolaryngol; 1998 Dec; 27(6):311-7. PubMed ID: 9857314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium spikes and calcium currents in neurons from the medial preoptic nucleus of rat.
    Sundgren-Andersson AK; Johansson S
    Brain Res; 1998 Feb; 783(2):194-209. PubMed ID: 9507126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.
    Magee JC; Carruth M
    J Neurophysiol; 1999 Oct; 82(4):1895-901. PubMed ID: 10515978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells.
    Azouz R; Jensen MS; Yaari Y
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):211-23. PubMed ID: 8730596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode of firing and rectifying properties of nucleus ovoidalis neurons in the avian auditory thalamus.
    Ströhmann B; Schwarz DW; Puil E
    J Neurophysiol; 1994 Apr; 71(4):1351-60. PubMed ID: 8035219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus.
    Zhan XJ; Cox CL; Rinzel J; Sherman SM
    J Neurophysiol; 1999 May; 81(5):2360-73. PubMed ID: 10322072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons.
    Llinás RR; Alonso A
    J Neurophysiol; 1992 Oct; 68(4):1307-20. PubMed ID: 1279134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple types of calcium channels in acutely isolated rat neostriatal neurons.
    Hoehn K; Watson TW; MacVicar BA
    J Neurosci; 1993 Mar; 13(3):1244-57. PubMed ID: 8382736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-dependent responses in neurons of the isolated respiratory network of newborn rats.
    Onimaru H; Ballanyi K; Richter DW
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):677-95. PubMed ID: 8815203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones.
    Nedergaard S; Flatman JA; Engberg I
    J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.