BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9502391)

  • 1. Understanding renal toxicity of heavy metals.
    Diamond GL; Zalups RK
    Toxicol Pathol; 1998; 26(1):92-103. PubMed ID: 9502391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of transport in chemical nephrotoxicity.
    Berndt WO
    Toxicol Pathol; 1998; 26(1):52-7. PubMed ID: 9502387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of urinary glutathione S-transferase and lactate dehydrogenase for differentiation between proximal and distal nephron damage.
    Bomhard E; Maruhn D; Vogel O; Mager H
    Arch Toxicol; 1990; 64(4):269-78. PubMed ID: 2386429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of inorganic mercury along the renal proximal tubule of the rabbit.
    Zalups RK; Barfuss D
    Toxicol Appl Pharmacol; 1990 Nov; 106(2):245-53. PubMed ID: 2256114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atractyloside nephrotoxicity: in vitro studies with suspensions of rat renal fragments and precision-cut cortical slices.
    Obatomi DK; Bach PH
    In Vitr Mol Toxicol; 2000; 13(1):25-36. PubMed ID: 10900405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity.
    Reyes JL; Molina-Jijón E; Rodríguez-Muñoz R; Bautista-García P; Debray-García Y; Namorado Mdel C
    Biomed Res Int; 2013; 2013():730789. PubMed ID: 23710457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercuric chloride-induced alterations in stress protein distribution in rat kidney.
    Stacchiotti A; Lavazza A; Rezzani R; Borsani E; Rodella L; Bianchi R
    Histol Histopathol; 2004 Oct; 19(4):1209-18. PubMed ID: 15375764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of inhibitory potency by nonpeptide angiotensin II receptor antagonists PD123177 and DuP 753 on proximal nephron and renal transport.
    Cogan MG; Liu FY; Wong PC; Timmermans PB
    J Pharmacol Exp Ther; 1991 Nov; 259(2):687-91. PubMed ID: 1941617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of luminal or basolateral uptake and transepithelial transport of mercury in isolated perfused proximal tubules exposed to mercury-metallothionein.
    Zalups RK; Cherian MG; Barfuss DW
    J Toxicol Environ Health; 1995 Jan; 44(1):101-13. PubMed ID: 7823324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of heavy metal nephrotoxicity in vitro using isolated rat glomeruli and proximal tubular fragments.
    Wilks MF; Kwizera EN; Bach PH
    Ren Physiol Biochem; 1990; 13(5):275-84. PubMed ID: 1697089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segment-specific and direction-dependent transport of cadmium and manganese in immortalized S1, S2, and S3 cells derived from mouse kidney proximal tubules.
    Fujishiro H; Hamao S; Isawa M; Himeno S
    J Toxicol Sci; 2019; 44(9):611-619. PubMed ID: 31474742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tubuloglomerular feedback and single nephron function after converting enzyme inhibition in the rat.
    Ploth DW; Rudulph J; LaGrange R; Navar LG
    J Clin Invest; 1979 Nov; 64(5):1325-35. PubMed ID: 227932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Hg2+-induced nephropathy in rats and mice lacking Mrp2: evidence of axial heterogeneity in the handling of Hg2+ along the proximal tubule.
    Zalups RK; Joshee L; Bridges CC
    Toxicol Sci; 2014 Nov; 142(1):250-60. PubMed ID: 25145654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-tocopherol protects against the renal damage caused by potassium dichromate.
    Arreola-Mendoza L; Reyes JL; Melendez E; Martín D; Namorado MC; Sanchez E; Del Razo LM
    Toxicology; 2006 Feb; 218(2-3):237-46. PubMed ID: 16343725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of gentamicin on isolated glomeruli and proximal tubules of the rabbit.
    Savin V; Karniski L; Cuppage F; Hodges G; Chonko A
    Lab Invest; 1985 Jan; 52(1):93-102. PubMed ID: 3965802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium transport and toxicity in isolated perfused segments of the renal proximal tubule.
    Robinson MK; Barfuss DW; Zalups RK
    Toxicol Appl Pharmacol; 1993 Jul; 121(1):103-11. PubMed ID: 8337694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of cisplatin in proximal and distal renal tubule epithelial cell lines.
    Kröning R; Katz D; Lichtenstein AK; Nagami GT
    Br J Cancer; 1999 Jan; 79(2):293-9. PubMed ID: 9888471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the metal chelator DMPS with OAT1 and OAT3 in intact isolated rabbit renal proximal tubules.
    Lungkaphin A; Chatsudthipong V; Evans KK; Groves CE; Wright SH; Dantzler WH
    Am J Physiol Renal Physiol; 2004 Jan; 286(1):F68-76. PubMed ID: 13129851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II upregulates type-1 angiotensin II receptors in renal proximal tubule.
    Cheng HF; Becker BN; Burns KD; Harris RC
    J Clin Invest; 1995 May; 95(5):2012-9. PubMed ID: 7738168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action of EGF and PGE2 on basolateral organic anion uptake in rabbit proximal renal tubules and hOAT1 expressed in human kidney epithelial cells.
    Sauvant C; Hesse D; Holzinger H; Evans KK; Dantzler WH; Gekle M
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F774-83. PubMed ID: 14644751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.