These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9502817)

  • 21. Regeneration of electroreceptors in weakly electric fish.
    Zakon HH
    Ciba Found Symp; 1991; 160():294-308; discussion 308-13. PubMed ID: 1752169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Innervation of putative rapidly adapting mechanoreceptors by calbindin- and calretinin-immunoreactive primary sensory neurons in the rat.
    Duc C; Barakat-Walter I; Droz B
    Eur J Neurosci; 1994 Feb; 6(2):264-71. PubMed ID: 8167847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs.
    Steyger PS; Burton M; Hawkins JR; Schuff NR; Baird RA
    Int J Dev Neurosci; 1997 Jul; 15(4-5):417-32. PubMed ID: 9263023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish.
    Carr CE; Maler L; Sas E
    J Comp Neurol; 1982 Oct; 211(2):139-53. PubMed ID: 7174886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunohistochemical demonstration of calbindin-containing nerve endings in the rat esophagus.
    Kuramoto H; Kuwano R
    Cell Tissue Res; 1994 Oct; 278(1):57-64. PubMed ID: 7954704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noise-induced transition to bursting in responses of paddlefish electroreceptor afferents.
    Neiman AB; Yakusheva TA; Russell DF
    J Neurophysiol; 2007 Nov; 98(5):2795-806. PubMed ID: 17855580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):319-32. PubMed ID: 2313348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postembryonic changes in the peripheral electrosensory system of a weakly electric fish: addition of receptor organs with age.
    Zakon HH
    J Comp Neurol; 1984 Oct; 228(4):557-70. PubMed ID: 6490969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative morphology of rodent vestibular periphery. II. Cristae ampullares.
    Desai SS; Ali H; Lysakowski A
    J Neurophysiol; 2005 Jan; 93(1):267-80. PubMed ID: 15240768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Brn-3a deficiency on parvalbumin-, calbindin D-28k-, calretinin- and calcitonin gene-related peptide-immunoreactive primary sensory neurons in the trigeminal ganglion.
    Ichikawa H; Yamaai T; Jacobowitz DM; Mo Z; Xiang M; Sugimoto T
    Neuroscience; 2002; 113(3):537-46. PubMed ID: 12150774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunohistochemical changes of neuronal calcium-binding proteins parvalbumin and calbindin-D-28k following unilateral deafferentation in the rat visual system.
    Schmidt-Kastner R; Meller D; Eysel UT
    Exp Neurol; 1992 Sep; 117(3):230-46. PubMed ID: 1397159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possible involvement of the ampullary electroreceptor system in detection of frequency-modulated electrocommunication signals in Eigenmannia.
    Naruse M; Kawasaki M
    J Comp Physiol A; 1998 Nov; 183(5):543-52. PubMed ID: 9839452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calbindin-D28K localization in the primate inner ear.
    Usami S; Shinkawa H; Inoue Y; Kanzaki J; Anniko M
    ORL J Otorhinolaryngol Relat Spec; 1995; 57(2):94-9. PubMed ID: 7731663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parvalbumin-containing cells of the angular portion of the vertical limb terminate on calbindin-immunoreactive neurons located at the border between the lateral and medial septum of the rat.
    Kiss J; Borhegyi Z; Csaky A; Szeiffert G; Leranth C
    Exp Brain Res; 1997 Jan; 113(1):48-56. PubMed ID: 9028774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel afferent terminal structure in the crista ampullaris of the goldfish, carassius auratus.
    Lanford PJ; Popper AN
    J Comp Neurol; 1996 Mar; 366(4):572-9. PubMed ID: 8833110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of denervation upon receptor cell survival and basal cell proliferation in tuberous electroreceptor organs of a weakly electric fish.
    Weisleder P; Lu Y; Zakon HH
    J Comp Neurol; 1994 Sep; 347(4):545-52. PubMed ID: 7814674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology and innervation of the vestibular lagena in pigeons.
    Zakir M; Wu LQ; Dickman JD
    Neuroscience; 2012 May; 209():97-107. PubMed ID: 22387112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peptide 19-immunoreactive primary sensory neurons in the rat trigeminal ganglion.
    Ichikawa H; Sugimoto T
    Brain Res; 1999 Nov; 846(2):274-9. PubMed ID: 10556647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional architecture of vestibular primary afferents from the posterior semicircular canal of a turtle, Pseudemys (Trachemys) scripta elegans.
    Brichta AM; Peterson EH
    J Comp Neurol; 1994 Jun; 344(4):481-507. PubMed ID: 7929889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regeneration of vestibular otolith afferents after ototoxic damage.
    Zakir M; Dickman JD
    J Neurosci; 2006 Mar; 26(11):2881-93. PubMed ID: 16540565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.