These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9503272)

  • 61. Amplification of extrachromosomal small circular DNAs in a murine model of accelerated senescence. A brief note.
    Yamagishi H; Kunisada T; Takeda T
    Mech Ageing Dev; 1985 Jan; 29(1):101-3. PubMed ID: 3982080
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prenatal development of the central catecholaminergic neurons in human embryos and fetuses.
    Verney C; Zecevic N; Puelles L
    Pediatr Pulmonol Suppl; 1997; 16():220-1. PubMed ID: 9443282
    [No Abstract]   [Full Text] [Related]  

  • 63. Incisor abnormality of senescence accelerated mouse (SAM).
    Sashima M; Satoh M; Suzuki A
    Gerodontology; 1987; 6(4):145-8. PubMed ID: 3508752
    [No Abstract]   [Full Text] [Related]  

  • 64. The interaction between lead and catecholaminergic function.
    Winder C
    Biochem Pharmacol; 1982 Dec; 31(23):3717-21. PubMed ID: 6760866
    [No Abstract]   [Full Text] [Related]  

  • 65. 3-Deazaadenosine keeps senescence at bay.
    Guerrero A; Gil J
    Aging (Albany NY); 2023 Mar; 15(7):2369-2370. PubMed ID: 36988502
    [No Abstract]   [Full Text] [Related]  

  • 66. Neuron survival in the aging mouse.
    Johnson HA; Erner S
    Exp Gerontol; 1972 Apr; 7(2):111-7. PubMed ID: 5042928
    [No Abstract]   [Full Text] [Related]  

  • 67. Senescence-accelerated Mouse (SAM): With Special Reference to Development and Pathological Phenotypes.
    Takeda T; Higuchi K; Hosokawa M
    ILAR J; 1997; 38(3):109-118. PubMed ID: 11528052
    [No Abstract]   [Full Text] [Related]  

  • 68. Dopaminergic neuron loss in mice due to increased levels of wild-type human α-Synuclein only takes place under conditions of accelerated aging.
    Perez-Villalba A; Sirerol-Piquer MS; Soriano-Cantón R; Folgado V; Pérez-Cañamás A; Kirstein M; Fariñas I; Pérez-Sánchez F
    Sci Rep; 2024 Jan; 14(1):2490. PubMed ID: 38291230
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Induction of Accelerated Aging in a Mouse Model.
    Cai N; Wu Y; Huang Y
    Cells; 2022 Apr; 11(9):. PubMed ID: 35563724
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sugarcane (
    Iwata K; Wu Q; Ferdousi F; Sasaki K; Tominaga K; Uchida H; Arai Y; Szele FG; Isoda H
    Front Cell Dev Biol; 2020; 8():573487. PubMed ID: 33123536
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Protective Effects of Hydrolyzed Chicken Extract (Probeptigen®/Cmi-168) on Memory Retention and Brain Oxidative Stress in Senescence-Accelerated Mice.
    Chou MY; Chen YJ; Lin LH; Nakao Y; Lim AL; Wang MF; Yong SM
    Nutrients; 2019 Aug; 11(8):. PubMed ID: 31408929
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Glucagon signaling modulates sweet taste responsiveness.
    Elson AE; Dotson CD; Egan JM; Munger SD
    FASEB J; 2010 Oct; 24(10):3960-9. PubMed ID: 20547661
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice.
    Takeda T
    Neurochem Res; 2009 Apr; 34(4):639-59. PubMed ID: 19199030
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Age-related changes in levels of the beta-subunit of nerve growth factor in selected regions of the brain: comparison between senescence-accelerated (SAM-P8) and senescence-resistant (SAM-R1) mice.
    Katoh-Semba R; Kato K
    Neurosci Res; 1994 Sep; 20(3):251-6. PubMed ID: 7838425
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cerebral plasmalogens and aldehydes in senescence-accelerated mice P8 and R1: a comparison between weaned, adult and aged mice.
    André A; Chanséaume E; Dumusois C; Cabaret S; Berdeaux O; Chardigny JM
    Brain Res; 2006 Apr; 1085(1):28-32. PubMed ID: 16581039
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The senescence-accelerated mouse (SAM-P8) as a model for the study of vascular functional alterations during aging.
    Lloréns S; de Mera RM; Pascual A; Prieto-Martín A; Mendizábal Y; de Cabo C; Nava E; Jordán J
    Biogerontology; 2007 Dec; 8(6):663-72. PubMed ID: 17786580
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Expression of the enzymes of dopamine synthesis in non-dopaminergic neurons: functional significance and regulation].
    Ugriumov MV
    Usp Fiziol Nauk; 2007; 38(4):3-20. PubMed ID: 18064905
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Immunocytochemical study of catecholaminergic neurons in the senescence-accelerated mouse (SAM-P8) brain.
    Karasawa N; Nagatsu I; Sakai K; Nagatsu T; Watanabe K; Onozuka M
    J Neural Transm (Vienna); 1997; 104(11-12):1267-75. PubMed ID: 9503272
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Murine models of brain aging and age-related neurodegenerative diseases.
    Jucker M; Ingram DK
    Behav Brain Res; 1997 Apr; 85(1):1-26. PubMed ID: 9095338
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.