These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 9503338)

  • 1. Inhibitory control of plateau properties in dorsal horn neurones in the turtle spinal cord in vitro.
    Russo RE; Nagy F; Hounsgaard J
    J Physiol; 1998 Feb; 506 ( Pt 3)(Pt 3):795-808. PubMed ID: 9503338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of plateau properties in dorsal horn neurones in a slice preparation of the turtle spinal cord.
    Russo RE; Nagy F; Hounsgaard J
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):459-74. PubMed ID: 9080374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic inhibition in the isolated respiratory network of neonatal rats.
    Brockhaus J; Ballanyi K
    Eur J Neurosci; 1998 Dec; 10(12):3823-39. PubMed ID: 9875360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plateau-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord.
    Russo RE; Hounsgaard J
    J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):39-54. PubMed ID: 8735693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycine and GABAA receptor-mediated synaptic transmission in rat substantia gelatinosa: inhibition by mu-opioid and GABAB agonists.
    Grudt TJ; Henderson G
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):473-83. PubMed ID: 9518706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic strength between motoneurons and terminals of the dorsolateral funiculus is regulated by GABA receptors in the turtle spinal cord.
    Delgado-Lezama R; Aguilar J; Cueva-Rolón R
    J Neurophysiol; 2004 Jan; 91(1):40-7. PubMed ID: 14523075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAA receptor-mediated IPSCs in rat thalamic sensory nuclei: patterns of discharge and tonic modulation by GABAB autoreceptors.
    Le Feuvre Y; Fricker D; Leresche N
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):91-104. PubMed ID: 9234199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn.
    Baccei ML; Fitzgerald M
    J Neurosci; 2004 May; 24(20):4749-57. PubMed ID: 15152035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post- and presynaptic GABA(B) receptor activation in neonatal rat rostral ventrolateral medulla neurons in vitro.
    Lin HH; Dun NJ
    Neuroscience; 1998 Sep; 86(1):211-20. PubMed ID: 9692755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substance P release in the dorsal horn assessed by receptor internalization: NMDA receptors counteract a tonic inhibition by GABA(B) receptors.
    Marvizón JC; Grady EF; Stefani E; Bunnett NW; Mayer EA
    Eur J Neurosci; 1999 Feb; 11(2):417-26. PubMed ID: 10051742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition.
    Lin Q; Peng YB; Willis WD
    J Neurophysiol; 1996 Jan; 75(1):109-23. PubMed ID: 8822545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition by opioids acting on mu-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones in vitro.
    Chieng B; Christie MJ
    Br J Pharmacol; 1994 Sep; 113(1):303-9. PubMed ID: 7812626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA- and glycine-mediated inhibitory postsynaptic potentials in neonatal rat rostral ventrolateral medulla neurons in vitro.
    Lin HH; Wu SY; Lai CC; Dun NJ
    Neuroscience; 1998 Jan; 82(2):429-42. PubMed ID: 9466452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary afferent-evoked glycine- and GABA-mediated IPSPs in substantia gelatinosa neurones in the rat spinal cord in vitro.
    Yoshimura M; Nishi S
    J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):29-38. PubMed ID: 7730987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAB receptor-mediated inhibition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurones.
    Scholz KP; Miller RJ
    J Physiol; 1991 Dec; 444():669-86. PubMed ID: 1668352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activaton of GABAB receptor inhibits the excitability of rat small diameter trigeminal root ganglion neurons.
    Takeda M; Tanimoto T; Ikeda M; Kadoi J; Matsumoto S
    Neuroscience; 2004; 123(2):491-505. PubMed ID: 14698756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Burst-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord.
    Russo RE; Hounsgaard J
    J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):55-66. PubMed ID: 8735694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained L-type calcium currents in dissociated deep dorsal horn neurons of the rat: characteristics and modulation.
    Voisin DL; Nagy F
    Neuroscience; 2001; 102(2):461-72. PubMed ID: 11166132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The actions of baclofen on neurones and synaptic transmission in the nucleus tractus solitarii of the rat in vitro.
    Brooks PA; Glaum SR; Miller RJ; Spyer KM
    J Physiol; 1992 Nov; 457():115-29. PubMed ID: 1363669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.