BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 950335)

  • 1. Studies on luciferase from Photobacterium phosphoreum. VIII. FMN-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction.
    Watanabe T; Nakamura T
    J Biochem; 1976 Mar; 79(3):489-95. PubMed ID: 950335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on luciferase from Photobacterium phosphoreum. IX. Further studies on the spectroscopic characteristics of the enzyme-FMN intermediates.
    Ashizawa N; Nakamura T; Watanabe T
    J Biochem; 1977 Apr; 81(4):1057-62. PubMed ID: 881410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on luciferase form Photobacterium phosphoreum. V. An enzyme-FMN intermediate complex in the bioluminescent reaction.
    Yoshida K; Takahashi M; Nakamura T
    J Biochem; 1974 Mar; 75(3):583-9. PubMed ID: 4834652
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on luciferase from Photobacterium phosphoreum. XI. Interaction of 8-substituted FMNH2 with luciferase.
    Watanabe T; Matsui K; Kasai S; Nakamura T
    J Biochem; 1978 Dec; 84(6):1441-6. PubMed ID: 738995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on luciferase from Photobacterium phosphoreum. X. Heat of formation of the intermediate in the bioluminescent reaction studied by stopped-flow calorimetry.
    Nakamura T
    J Biochem; 1978 Apr; 83(4):1077-83. PubMed ID: 659382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme.
    Lee J; Murphy CL
    Biochemistry; 1975 May; 14(10):2259-68. PubMed ID: 807236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases.
    Valkova N; Szittner R; Meighen EA
    Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity and stability of the luciferase--flavin intermediate.
    Becvar JE; Tu SC; Hastings JW
    Biochemistry; 1978 May; 17(9):1807-12. PubMed ID: 306832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activities of the bimodal fluorescent protein produced by Photobacterium phosphoreum strain bmFP in the luciferase reaction in vitro.
    Karatani H; Konaka T
    Photochem Photobiol; 2000 Feb; 71(2):237-42. PubMed ID: 10687400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stopped-flow kinetic analysis of the bacterial luciferase reaction.
    Abu-Soud H; Mullins LS; Baldwin TO; Raushel FM
    Biochemistry; 1992 Apr; 31(15):3807-13. PubMed ID: 1567836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on luciferase from Photobacterium phosphoreum. VI. Stoichiometry and mode of binding of FMNH2 and O2 to stripped luciferase.
    Watanabe T; Tomita G; Nakamura T
    J Biochem; 1974 Jun; 75(6):1249-55. PubMed ID: 4426891
    [No Abstract]   [Full Text] [Related]  

  • 12. The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways.
    Hastings JW; Balny C
    J Biol Chem; 1975 Sep; 250(18):7288-93. PubMed ID: 809433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inhibitory analysis of the luminescent electron transport chain of Photobacterium fischeri].
    Ismailov AD; Danilov VS; Malkov IuA; Egorov NS
    Biokhimiia; 1981 Jan; 46(1):40-6. PubMed ID: 7248374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism.
    Meighen EA; Bartlet I
    J Biol Chem; 1980 Dec; 255(23):11181-7. PubMed ID: 6969259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Isolation and purification of bacterial luciferase from Photobacterium fischeri for analytical purposes].
    Shumikhin VN; Danilov VS; Malkov IuA; Egorov NS
    Biokhimiia; 1980 Sep; 45(9):1576-81. PubMed ID: 7248358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): half-sites reactivity.
    Nijvipakul S; Ballou DP; Chaiyen P
    Biochemistry; 2010 Nov; 49(43):9241-8. PubMed ID: 20836540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the function of aldehyde in bacterial bioluminescence: evidence for an aldehyde requirement during luminescence from the frozen state.
    Eley M; Cormier MJ
    Biochem Biophys Res Commun; 1968 Aug; 32(3):454-60. PubMed ID: 5666729
    [No Abstract]   [Full Text] [Related]  

  • 18. [Mechanism of action of 2,4-dinitrofluorobenzene on bacterial luminescence in vitro].
    Kratasiuk VA; Fish AM
    Biokhimiia; 1980 Jul; 45(7):1175-81. PubMed ID: 7213855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay.
    Hosseinkhani S; Szittner R; Meighen EA
    Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics.
    Eckstein JW; Hastings JW; Ghisla S
    Biochemistry; 1993 Jan; 32(2):404-11. PubMed ID: 8422349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.