BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 950466)

  • 1. Altered lymphocyte functions in rats bearing syngeneic Moloney sarcoma tumors. II. Suppressor cells.
    Veit BC; Feldman JD
    J Immunol; 1976 Aug; 117(2):655-60. PubMed ID: 950466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered lymphocyte functions in rats bearing syngeneic Moloney sarcoma tumors. I. Mitogen responses, mixed lymphocyte reactions (MLR) and mixed lymphocyte-tumor reactions (MLTR).
    Veit BC; Feldman JD
    J Immunol; 1976 Aug; 117(2):646-54. PubMed ID: 133190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance to tumor growth mediated by Listeria monocytogenes: collaborative and suppressive macrophage-lymphocyte interactions in vitro.
    Youdim S; Sharman M
    J Immunol; 1976 Nov; 117(5 Pt.2):1860-5. PubMed ID: 825574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumour-induced suppressor macrophages in rats: differences in their suppressive effects on the Con A and PHA responses.
    Mizushima Y; Wepsic HT; Yamamura Y; Desilva MA
    Clin Exp Immunol; 1984 Aug; 57(2):371-9. PubMed ID: 6235988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alveolar macrophages. II. Inhibition of lymphocyte proliferation by purified macrophages from rat lung.
    Holt PG
    Immunology; 1979 Jun; 37(2):429-36. PubMed ID: 468308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of lipocortin I in macrophage-mediated immunosuppression in tumor-bearing mice.
    Sakata T; Iwagami S; Tsuruta Y; Teraoka H; Hojo K; Suzuki S; Sato K; Suzuki R
    J Immunol; 1990 Jul; 145(1):387-96. PubMed ID: 2141618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of two distinct subpopulations of suppressor cells in rats bearing chemically induced tumors.
    Iguchi S; Ishii Y; Yamaoka H; Sato N; Kikuchi K
    Neoplasma; 1981; 28(1):51-8. PubMed ID: 6456424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Recent data on the immunology of tumors. Mechanisms of escape of immunological control. Role of suppressor cells].
    Lespinats G; Poupon MF
    Bull Cancer; 1976; 63(2):269-78. PubMed ID: 1086690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunosuppression of experimental allergic encephalomyelitis. III. In vitro evidence for induction of suppressor T lymphocytes in draining lymph node cells of animals immunized with myelin basic protein complexed to lipopolysaccharides.
    Raziuddin S; Kibler RF; Morrison DC
    J Immunol; 1982 May; 128(5):2073-80. PubMed ID: 6174621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soluble suppressor factor from the spleens of tumor-bearing mice.
    Subramanian C; Yu S; McKhann CF
    Cancer Res; 1978 Jul; 38(7):1996-2002. PubMed ID: 657137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of suppressor macrophages for immunosurveillance of tumor-bearing mice.
    Fujii T; Igarashi T; Kishimoto S
    J Natl Cancer Inst; 1987 Mar; 78(3):509-17. PubMed ID: 2950265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BCG-induced suppressor cells. I. Demonstration of a macrophage-like suppressor cell that inhibits cytotoxic T cell generation in vitro.
    Klimpel GR; Henney CS
    J Immunol; 1978 Feb; 120(2):563-9. PubMed ID: 304460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressor cells in the spleens of tumor-bearing mice: enrichment by centrifugation on hypaque-ficoll and characterization of the suppressor population.
    Pope BL; Whitney RB; Levy JG; Kilburn DG
    J Immunol; 1976 May; 116(5):1342-6. PubMed ID: 1270799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of macrophage function by 2-chloroadenosine.
    Ohtani A; Kumazawa Y; Fujisawa H; Nishimura C
    J Reticuloendothel Soc; 1982 Sep; 32(3):189-200. PubMed ID: 7153986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural suppressor (NS) activity from murine neonatal spleen is responsive to IFN-gamma.
    Maier T; Holda JH
    J Immunol; 1987 Jun; 138(12):4075-84. PubMed ID: 2953798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graft-vs-host reactions (GVHR) across minor murine histocompatibility barriers. II. Development of natural suppressor cell activity.
    Maier T; Holda JH; Claman HN
    J Immunol; 1985 Sep; 135(3):1644-51. PubMed ID: 3160774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation by macrophages of lymphocyte responses to phytohaemagglutinin, concanavalin A and semiallogeneic cells.
    Hem E
    Acta Pathol Microbiol Scand C; 1979 Feb; 87C(1):17-21. PubMed ID: 433602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymphocyte function in experimental African trypanosomiasis. III. Loss of lymph node cell responsiveness.
    Wellhausen SR; Mansfield JM
    J Immunol; 1980 Mar; 124(3):1183-6. PubMed ID: 6444647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of lymphocyte responses in vitro. 3. Inhibition by adherent cells of the T-lymphocyte response to phytohemagglutinin.
    Folch H; Yoshinaga M; Waksman BH
    J Immunol; 1973 Mar; 110(3):835-9. PubMed ID: 4540133
    [No Abstract]   [Full Text] [Related]  

  • 20. Tumor cell-triggered macrophage-mediated suppression of the T-cell cytotoxic response to tumor-associated antigens. I. Characterization of the cell components for induction of suppression.
    Ting CC; Rodrigues D
    J Natl Cancer Inst; 1982 Oct; 69(4):867-72. PubMed ID: 6214653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.