These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9504802)

  • 1. Representation of amino acid sequences as two-dimensional point patterns.
    Pleissner KP; Wernisch L; Oswald H; Fleck E
    Electrophoresis; 1997 Dec; 18(15):2709-13. PubMed ID: 9504802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the subcellular location of prokaryotic proteins based on a new representation of the amino acid composition.
    Feng ZP
    Biopolymers; 2001 Apr; 58(5):491-9. PubMed ID: 11241220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein identification with N and C-terminal sequence tags in proteome projects.
    Wilkins MR; Gasteiger E; Tonella L; Ou K; Tyler M; Sanchez JC; Gooley AA; Walsh BJ; Bairoch A; Appel RD; Williams KL; Hochstrasser DF
    J Mol Biol; 1998 May; 278(3):599-608. PubMed ID: 9600841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On a four-dimensional representation of DNA primary sequences.
    Randić M; Balaban AT
    J Chem Inf Comput Sci; 2003; 43(2):532-9. PubMed ID: 12653518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential implications of availability of short amino acid sequences in proteins: an old and new approach to protein decoding and design.
    Otaki JM; Gotoh T; Yamamoto H
    Biotechnol Annu Rev; 2008; 14():109-41. PubMed ID: 18606361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation.
    Yang JY; Peng ZL; Yu ZG; Zhang RJ; Anh V; Wang D
    J Theor Biol; 2009 Apr; 257(4):618-26. PubMed ID: 19183559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A bank of protein family images Prof-Image for rapid determination of possible functions of random amino acid sequences].
    Bachinskiĭ AG; Iarygin AA; Kulichkov VA; Guseva EG
    Mol Biol (Mosk); 1995; 29(4):907-17. PubMed ID: 7476956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid repeat patterns in protein sequences: their diversity and structural-functional implications.
    Katti MV; Sami-Subbu R; Ranjekar PK; Gupta VS
    Protein Sci; 2000 Jun; 9(6):1203-9. PubMed ID: 10892812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new hybrid fractal algorithm for predicting thermophilic nucleotide sequences.
    Lu JL; Hu XH; Hu DG
    J Theor Biol; 2012 Jan; 293():74-81. PubMed ID: 22001320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of differences in amino acid substitution patterns, using multilevel G-tests.
    Pacholczyk M; Kimmel M
    C R Biol; 2005 Jul; 328(7):632-41. PubMed ID: 15992746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J; Feng JA
    Proteins; 2005 Feb; 58(3):628-37. PubMed ID: 15616964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity analysis for DNA sequences based on chaos game representation. Case study: the albumin.
    Stan C; Cristescu CP; Scarlat EI
    J Theor Biol; 2010 Dec; 267(4):513-8. PubMed ID: 20869369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tendency for local repetitiveness in amino acid usages in modern proteins.
    Nishizawa K; Nishizawa M; Kim KS
    J Mol Biol; 1999 Dec; 294(4):937-53. PubMed ID: 10588898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Main-chain conformational tendencies of amino acids.
    Anderson RJ; Weng Z; Campbell RK; Jiang X
    Proteins; 2005 Sep; 60(4):679-89. PubMed ID: 16021632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L.
    Agüero-Chapin G; González-Díaz H; Molina R; Varona-Santos J; Uriarte E; González-Díaz Y
    FEBS Lett; 2006 Feb; 580(3):723-30. PubMed ID: 16413021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Protein databank for several tissues derived from five instar of silkworm].
    Zhong BX
    Yi Chuan Xue Bao; 2001; 28(3):217-24. PubMed ID: 11280994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Bank of samples from the Prof_Pat protein family, assessment of efficacy].
    Nizolenko LF; Bachinskiĭ AG; Naumochkin AN; Iarygin AA; Grigorovich DA
    Mol Biol (Mosk); 2004; 38(2):256-64. PubMed ID: 15125231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swaps in protein sequences.
    Fliess A; Motro B; Unger R
    Proteins; 2002 Aug; 48(2):377-87. PubMed ID: 12112704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.