These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 950594)

  • 1. Kinetics of active sodium transport in rat proximal tubules and its variation by cardiac glycosides at zero net volume and ion fluxes. Evidence for a multisite sodium transport system.
    Györy AZ; Lingard JM
    J Physiol; 1976 May; 257(2):257-74. PubMed ID: 950594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trans-proximal tubular steady-state concentration differences studied by micro-puncture and tissue content of sodium and chloride at varying intraluminal sodium concentrations in vitro in rat kidney cortex slices: evidence for a multisite sodium transport system.
    Györy AZ; Roby H
    J Physiol; 1977 Mar; 265(3):637-55. PubMed ID: 856986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules.
    Schafer JA; Troutman SL; Andreoli TE
    J Gen Physiol; 1974 Nov; 64(5):582-607. PubMed ID: 4443793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of high Na and Cl concentrations on rat proximal volume and Na fluxes at zero tubular flow.
    Gyory AZ; Ng J; McNeil D
    Clin Exp Pharmacol Physiol; 1987 Sep; 14(9):685-93. PubMed ID: 3442952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cardiac glycosides and sodium ethacrynate on transepithelial sodium transport in in vivo micropuncture experiments and on isolated plasma membrane Na-K ATPase in vitro of the rat.
    Györy AZ; Brendel U; Kinne R
    Pflugers Arch; 1972; 335(4):287-96. PubMed ID: 4263569
    [No Abstract]   [Full Text] [Related]  

  • 6. Kinetics of Na+ transport in Necturus proximal tubule.
    Spring KR; Giebisch G
    J Gen Physiol; 1977 Sep; 70(3):307-28. PubMed ID: 894258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intracellular sodium activity of cardiac Purkinje fibres during inhibition and re-activation of the Na-K pump.
    Deitmer JW; Ellis D
    J Physiol; 1978 Nov; 284():241-59. PubMed ID: 731536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The difference in sensitivity to cardiac steroids of (Na++K+)-stimulated ATPase and amino acid transport in the intestinal mucosa of the rat and other species.
    Robinson JW
    J Physiol; 1970 Jan; 206(1):41-60. PubMed ID: 4250728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney.
    Harris PJ; Young JA
    Pflugers Arch; 1977 Jan; 367(3):295-7. PubMed ID: 556854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.
    Green R; Giebisch G
    Am J Physiol; 1975 Nov; 229(5):1205-15. PubMed ID: 1200138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium- and buffer transport.
    Ullrich KJ; Rumrich G; Klöss S
    Pflugers Arch; 1976 Aug; 364(3):223-8. PubMed ID: 986634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracer Na fluxes in Necturus proximal tubule.
    Spring KR; Giebisch G
    Am J Physiol; 1977 May; 232(5):F461-70. PubMed ID: 860764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of water movement on sodium transport in kidney proximal tubule: a microperfusion study substituting lithium for sodium.
    Corman B; Roinel N; de Rouffignac C
    J Membr Biol; 1981; 62(1-2):105-11. PubMed ID: 7277472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules.
    Barfuss DW; Mays JM; Schafer JA
    Am J Physiol; 1980 Apr; 238(4):F324-33. PubMed ID: 7377303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proxmal tubules.
    Imai M; Kokko JP
    J Clin Invest; 1972 Feb; 51(2):314-25. PubMed ID: 5009115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute volume expansion: rat proximal tubular Na transport inhibition by autologous tubular fluid without changes in Na permeability.
    Györy AZ; Willis W; Chan M
    Aust J Exp Biol Med Sci; 1985 Aug; 63 ( Pt 4)():451-62. PubMed ID: 2417582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cardiac glycosides on sodium pump expression and function in LLC-PK1 and MDCK cells.
    Liu J; Periyasamy SM; Gunning W; Fedorova OV; Bagrov AY; Malhotra D; Xie Z; Shapiro JI
    Kidney Int; 2002 Dec; 62(6):2118-25. PubMed ID: 12427136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules.
    Kawamura S; Imai M; Seldin DW; Kukko JP
    J Clin Invest; 1975 Jun; 55(6):1269-77. PubMed ID: 1133172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of ion fluxes on fluid transport by rat proximal tubule.
    Bomsztyk K; Wright FS
    Am J Physiol; 1986 Apr; 250(4 Pt 2):F680-9. PubMed ID: 3083697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A component of fluid absorption linked to passive ion flows in the superficial pars recta.
    Schafer JA; Patlak CS; Andreoli TE
    J Gen Physiol; 1975 Oct; 66(4):445-71. PubMed ID: 1181377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.