These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9506288)

  • 41. Prevalence of Bacillus cereus in selected foods and detection of enterotoxin using TECRA-VIA and BCET-RPLA.
    Rusul G; Yaacob NH
    Int J Food Microbiol; 1995 Apr; 25(2):131-9. PubMed ID: 7547144
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Survival variability of 12 strains of Bacillus cereus yielded to spray drying of whole milk.
    Alvarenga VO; Brancini GTP; Silva EK; da Pia AKR; Campagnollo FB; Braga GÚL; Hubinger MD; Sant'Ana AS
    Int J Food Microbiol; 2018 Dec; 286():80-89. PubMed ID: 30053697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of carbon dioxide on the growth of Bacillus cereus spores in milk during storage.
    Werner BG; Hotchkiss JH
    J Dairy Sci; 2002 Jan; 85(1):15-8. PubMed ID: 11860107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Survival and growth of Bacillus cereus in Egyptian bread and its effect on bread staling.
    Rizk IR; Ebeid HM
    Nahrung; 1989; 33(9):839-44. PubMed ID: 2516878
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach.
    Wijnands LM; Pielaat A; Dufrenne JB; Zwietering MH; van Leusden FM
    J Appl Microbiol; 2009 Jan; 106(1):258-67. PubMed ID: 19120618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A quantitative microbiological exposure assessment model for Bacillus cereus in REPFEDs.
    Daelman J; Membré JM; Jacxsens L; Vermeulen A; Devlieghere F; Uyttendaele M
    Int J Food Microbiol; 2013 Sep; 166(3):433-49. PubMed ID: 24029028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modelling the effect of temperature, water activity and pH on the growth of Serpula lacrymans.
    Maurice S; Coroller L; Debaets S; Vasseur V; Le Floch G; Barbier G
    J Appl Microbiol; 2011 Dec; 111(6):1436-46. PubMed ID: 21951641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacillus cereus in free-stall bedding.
    Magnusson M; Svensson B; Kolstrup C; Christiansson A
    J Dairy Sci; 2007 Dec; 90(12):5473-82. PubMed ID: 18024738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modelling and predicting the effect of temperature, water activity and pH on growth of Streptococcus iniae in Tilapia.
    Zhou K; Cui TT; Li PL; Liang NJ; Liu SC; Ma CW; Peng ZH
    J Appl Microbiol; 2008 Dec; 105(6):1956-65. PubMed ID: 19120642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characteristics of Bacillus cereus related to safe food production.
    Dufrenne J; Soentoro P; Tatini S; Day T; Notermans S
    Int J Food Microbiol; 1994 Sep; 23(1):99-109. PubMed ID: 7811576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of salt concentration on bacterial growth on plates with gradients of pH and temperature.
    Peters AC; Thomas L; Wimpenny JW
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):309-14. PubMed ID: 1903754
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modelling the overall effect of pH on the apparent heat resistance of Bacillus cereus spores.
    Couvert O; Leguerinel I; Mafart P
    Int J Food Microbiol; 1999 Aug; 49(1-2):57-62. PubMed ID: 10477071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reducing activity, glucose metabolism and acid tolerance response of Bacillus cereus grown at various pH and oxydo-reduction potential levels.
    Le Lay J; Bahloul H; Sérino S; Jobin M; Schmitt P
    Food Microbiol; 2015 Apr; 46():314-321. PubMed ID: 25475301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on the ATPase of Bacillus cereus.
    Higuti IH; Stencel M; Nascimento KH; Nascimento AJ
    Cell Biochem Funct; 1992 Dec; 10(4):237-41. PubMed ID: 1473262
    [TBL] [Abstract][Full Text] [Related]  

  • 55. pH gradients through colonies of Bacillus cereus and the surrounding agar.
    Robinson TP; Wimpenny JW; Earnshaw RG
    J Gen Microbiol; 1991 Dec; 137(12):2885-9. PubMed ID: 1791442
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of three preservatives on the growth of Bacillus cereus, Vero cytotoxigenic Escherichia coli and Staphylococcus aureus, on plates with gradients of pH and sodium chloride concentration.
    Thomas LV; Wimpenny JW; Davis JG
    Int J Food Microbiol; 1993 Feb; 17(4):289-301. PubMed ID: 8466802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationship between the apparent heat resistance of Bacillus cereus spores and the pH and NaCl concentration of the recovery medium.
    Leguerinel I; Couvert O; Mafart P
    Int J Food Microbiol; 2000 Apr; 55(1-3):223-7. PubMed ID: 10791747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial growth in dry grain food (Sunsik) beverages prepared with water, milk, soymilk, or honey-water.
    Jung JH; Lee SY
    J Food Sci; 2010 May; 75(4):M239-42. PubMed ID: 20546416
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low temperatures and fermentative metabolism limit peptidoglycan digestion of Bacillus cereus. Impact on colony forming unit counts.
    de Sarrau B; Clavel T; Bornard I; Nguyen-the C
    Food Microbiol; 2013 Apr; 33(2):213-20. PubMed ID: 23200654
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparing nonsynergistic gamma models with interaction models to predict growth of emetic Bacillus cereus when using combinations of pH and individual undissociated acids as growth-limiting factors.
    Biesta-Peters EG; Reij MW; Gorris LG; Zwietering MH
    Appl Environ Microbiol; 2010 Sep; 76(17):5791-801. PubMed ID: 20639365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.