These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9506554)

  • 1. End-plate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis.
    Ruff RL; Lennon VA
    Ann Neurol; 1998 Mar; 43(3):370-9. PubMed ID: 9506554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types.
    Ruff RL
    Acta Physiol Scand; 1996 Mar; 156(3):159-68. PubMed ID: 8729676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How myasthenia gravis alters the safety factor for neuromuscular transmission.
    Ruff RL; Lennon VA
    J Neuroimmunol; 2008 Sep; 201-202():13-20. PubMed ID: 18632162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine release in myasthenia gravis: regulation at single end-plate level.
    Plomp JJ; Van Kempen GT; De Baets MB; Graus YM; Kuks JB; Molenaar PC
    Ann Neurol; 1995 May; 37(5):627-36. PubMed ID: 7755358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of length changes on Na+ current amplitude and excitability near and far from the end-plate.
    Ruff RL
    Muscle Nerve; 1996 Sep; 19(9):1084-92. PubMed ID: 8761263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+ currents near and away from endplates on human fast and slow twitch muscle fibers.
    Ruff RL; Whittlesey D
    Muscle Nerve; 1993 Sep; 16(9):922-9. PubMed ID: 8355723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiology of postsynaptic activation.
    Ruff RL
    Ann N Y Acad Sci; 1998 May; 841():57-70. PubMed ID: 9668221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lead on voltage-gated sodium channels in rat hippocampal CA1 neurons.
    Gu Y; Wang L; Xiao C; Guo F; Ruan DY
    Neuroscience; 2005; 133(3):679-90. PubMed ID: 15896915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Observation on the changes in the frequency of end-plate potentials evoked by sera with different antibodies from patients with myasthenia gravis in nerve-muscle preparation of rats].
    Lu C
    Zhonghua Shen Jing Jing Shen Ke Za Zhi; 1992 Feb; 25(1):44-6, 63. PubMed ID: 1317284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquired slow-channel syndrome: a form of myasthenia gravis with prolonged open time of the acetylcholine receptor channel.
    Wintzen AR; Plomp JJ; Molenaar PC; van Dijk JG; van Kempen GT; Vos RM; Wokke JH; Vincent A
    Ann Neurol; 1998 Oct; 44(4):657-64. PubMed ID: 9778265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic experimental autoimmune myasthenia gravis induced by monoclonal antibody to acetylcholine receptor: biochemical and electrophysiologic criteria.
    Gomez CM; Richman DP
    J Immunol; 1987 Jul; 139(1):73-6. PubMed ID: 3035025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental autoimmune myasthenia gravis: the rabbit as an animal model.
    Eldefrawi ME
    Fed Proc; 1978 Dec; 37(14):2823-7. PubMed ID: 720635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitatory effects of 4-aminopyridine on neuromuscular transmission in disease states.
    Kim YI; Goldner MM; Sanders DB
    Muscle Nerve; 1980; 3(2):112-9. PubMed ID: 6245355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Is atypical sodium current related to arterial pathophysiology?].
    Choby C; Quignard JF; Boccara G; Mangoni M; Frapier JM; Albat B; Nargeot J; Richard S
    Arch Mal Coeur Vaiss; 2000 Aug; 93(8):1003-8. PubMed ID: 10989746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myasthenia induced by monoclonal anti-acetylcholine receptor antibodies: clinical and electrophysiological aspects.
    Burres SA; Crayton JW; Gomez CM; Richman DP
    Ann Neurol; 1981 Jun; 9(6):563-8. PubMed ID: 6167199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Congenital myasthenia: end-plate acetylcholine receptors and electrophysiology in five cases.
    Vincent A; Cull-Candy SG; Newsom-Davis J; Trautmann A; Molenaar PC; Polak RL
    Muscle Nerve; 1981; 4(4):306-18. PubMed ID: 7254233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors contributing to failure of neuromuscular transmission in myasthenia gravis and the special case of the extraocular muscles.
    Serra A; Ruff R; Kaminski H; Leigh RJ
    Ann N Y Acad Sci; 2011 Sep; 1233():26-33. PubMed ID: 21950972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholine release in diaphragm of rats with chronic experimental autoimmune myasthenia gravis.
    Kelly JJ; Lambert EH; Lennon VA
    Ann Neurol; 1978 Jul; 4(1):67-72. PubMed ID: 211931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of end-plate channels in rats immunized against acetylcholine receptors.
    Alemà S; Cull-Candy SG; Miledi R; Trautmann A
    J Physiol; 1981 Feb; 311():251-66. PubMed ID: 6267252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential contribution of sodium channel subtypes to action potential generation in unmyelinated human C-type nerve fibers.
    Lang PM; Hilmer VB; Grafe P
    Anesthesiology; 2007 Sep; 107(3):495-501. PubMed ID: 17721253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.