BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9506842)

  • 1. Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum.
    Dierks T; Lecca MR; Schmidt B; von Figura K
    FEBS Lett; 1998 Feb; 423(1):61-5. PubMed ID: 9506842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
    Dierks T; Schmidt B; von Figura K
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11963-8. PubMed ID: 9342345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
    Dierks T; Lecca MR; Schlotterhose P; Schmidt B; von Figura K
    EMBO J; 1999 Apr; 18(8):2084-91. PubMed ID: 10205163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residues critical for formylglycine formation and/or catalytic activity of arylsulfatase A.
    Knaust A; Schmidt B; Dierks T; von Bülow R; von Figura K
    Biochemistry; 1998 Oct; 37(40):13941-6. PubMed ID: 9760228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine.
    Recksiek M; Selmer T; Dierks T; Schmidt B; von Figura K
    J Biol Chem; 1998 Mar; 273(11):6096-103. PubMed ID: 9497327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
    Dierks T; Miech C; Hummerjohann J; Schmidt B; Kertesz MA; von Figura K
    J Biol Chem; 1998 Oct; 273(40):25560-4. PubMed ID: 9748219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of posttranslational formylglycine formation by luminal components of the endoplasmic reticulum.
    Fey J; Balleininger M; Borissenko LV; Schmidt B; von Figura K; Dierks T
    J Biol Chem; 2001 Dec; 276(50):47021-8. PubMed ID: 11600503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction.
    Peng J; Alam S; Radhakrishnan K; Mariappan M; Rudolph MG; May C; Dierks T; von Figura K; Schmidt B
    FEBS J; 2015 Sep; 282(17):3262-74. PubMed ID: 26077311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
    Miech C; Dierks T; Selmer T; von Figura K; Schmidt B
    J Biol Chem; 1998 Feb; 273(9):4835-7. PubMed ID: 9478923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
    Mariappan M; Preusser-Kunze A; Balleininger M; Eiselt N; Schmidt B; Gande SL; Wenzel D; Dierks T; von Figura K
    J Biol Chem; 2005 Apr; 280(15):15173-9. PubMed ID: 15708861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes.
    Landgrebe J; Dierks T; Schmidt B; von Figura K
    Gene; 2003 Oct; 316():47-56. PubMed ID: 14563551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of an enzyme-substrate complex provides insight into the interaction between human arylsulfatase A and its substrates during catalysis.
    von Bülow R; Schmidt B; Dierks T; von Figura K; Usón I
    J Mol Biol; 2001 Jan; 305(2):269-77. PubMed ID: 11124905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A major step on the road to understanding a unique posttranslational modification and its role in a genetic disease.
    Baenziger JU
    Cell; 2003 May; 113(4):421-2. PubMed ID: 12757700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posttranslational modification of serine to formylglycine in bacterial sulfatases. Recognition of the modification motif by the iron-sulfur protein AtsB.
    Marquordt C; Fang Q; Will E; Peng J; von Figura K; Dierks T
    J Biol Chem; 2003 Jan; 278(4):2212-8. PubMed ID: 12419807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and stability of arylsulfatase A and B in fibroblasts from multiple sulfatase deficiency.
    Steckel F; Hasilik A; von Figura K
    Eur J Biochem; 1985 Aug; 151(1):141-5. PubMed ID: 2863138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications.
    Appel MJ; Bertozzi CR
    ACS Chem Biol; 2015 Jan; 10(1):72-84. PubMed ID: 25514000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase.
    Szameit C; Miech C; Balleininger M; Schmidt B; von Figura K; Dierks T
    J Biol Chem; 1999 May; 274(22):15375-81. PubMed ID: 10336424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
    Dierks T; Schmidt B; Borissenko LV; Peng J; Preusser A; Mariappan M; von Figura K
    Cell; 2003 May; 113(4):435-44. PubMed ID: 12757705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proprotein convertases process and thereby inactivate formylglycine-generating enzyme.
    Ennemann EC; Radhakrishnan K; Mariappan M; Wachs M; Pringle TH; Schmidt B; Dierks T
    J Biol Chem; 2013 Feb; 288(8):5828-39. PubMed ID: 23288839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arylsulfatases of human-lung tumors transplanted into athymic mice. Cancer-associated modification of arylsulfatase B variant.
    Gasa S; Makita A; Kameya T; Kodama T; Koide T; Tsumuraya M; Komai T
    Eur J Biochem; 1981 Jun; 116(3):497-503. PubMed ID: 6114860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.